qnm: A Python package for calculating Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients

$\mathtt{qnm}$ is an open-source Python package for computing the Kerr quasinormal mode frequencies, angular separation constants, and spherical-spheroidal mixing coefficients. The $\mathtt{qnm}$ package includes a Leaver solver with the Cook-Zalutskiy spectral approach to the angular sector, and a caching mechanism to avoid repeating calculations. We provide a large cache of low $\ell, m, n$ modes, which can be downloaded and installed with a single function call, and interpolated to provide good initial guess for root-polishing at new values of spin.

[1]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[2]  E. Berti,et al.  Mixing of spherical and spheroidal modes in perturbed Kerr black holes , 2014, 1408.1860.

[3]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[4]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[5]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[6]  S. Teukolsky,et al.  Testing the No-Hair Theorem with GW150914. , 2019, Physical review letters.

[7]  S. Detweiler BLACK HOLES AND GRAVITATIONAL WAVES. III. THE RESONANT FREQUENCIES OF ROTATING HOLES , 1980 .

[8]  A. Ottewill,et al.  On an expansion method for black hole quasinormal modes and Regge poles , 2009, 0908.0329.

[9]  The evolution of circular, non-equatorial orbits of Kerr black holes due to gravitational-wave emission , 1999, gr-qc/9910091.

[10]  A. Loinger On black holes and gravitational waves , 2002 .

[11]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[13]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[14]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[15]  G. B. Cook,et al.  Gravitational perturbations of the Kerr geometry: High-accuracy study , 2014, 1410.7698.