Wall-induced forces on a rigid sphere at finite Reynolds number

We perform direct numerical simulations of a rigid sphere translating parallel to a flat wall in an otherwise quiescent ambient fluid. A spectral element method is employed to perform the simulations with high accuracy. For $Re\,{<}\,100$, we observe the lift coefficient to decrease with both Reynolds number and distance from the wall. In this regime the present results are in good agreement with the low-Reynolds-number theory of Vasseur & Cox (1977), with the recent experiments of Takemura & Magnaudet (2003) and with the simulations of Kim et al. (1993). The most surprising result from the present simulations is that the wall-induced lift coefficient increases dramatically with increasing $Re$ above about 100. Detailed analysis of the flow field around the sphere suggests that this increase is due to an imperfect bifurcation resulting in the formation of a double-threaded wake vortical structure. In addition to a non-rotating sphere, we also simulate a freely rotating sphere in order to assess the importance of free rotation on the translational motion of the sphere. We observe the effect of sphere rotation on lift and drag forces to be small. We also explore the effect of the wall on the onset of unsteadiness.

[1]  P. Saffman The lift on a small sphere in a slow shear flow , 1965, Journal of Fluid Mechanics.

[2]  Jacobus B.W. Kok,et al.  Dynamics of a pair of gas bubbles moving trough liquid, part I , 1993 .

[3]  Dominique Legendre,et al.  Drag, deformation and lateral migration of a buoyant drop moving near a wall , 2003, Journal of Fluid Mechanics.

[4]  V. C. Patel,et al.  Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.

[5]  John B. McLaughlin,et al.  Wall-induced lift on a sphere , 1990 .

[6]  H. C. Simpson Bubbles, drops and particles , 1980 .

[7]  H. Faxén Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist , 1922 .

[8]  S. Balachandar,et al.  Direct Numerical Simulation of Flow and Heat Transfer From a Sphere in a Uniform Cross-Flow , 2001 .

[9]  S. Balachandar,et al.  Mechanisms for generating coherent packets of hairpin vortices in channel flow , 1999, Journal of Fluid Mechanics.

[10]  S. Balachandar,et al.  Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re , 2002 .

[11]  S. I. Rubinow,et al.  The transverse force on a spinning sphere moving in a viscous fluid , 1961, Journal of Fluid Mechanics.

[12]  P. Cherukat,et al.  The inertial lift on a rigid sphere in a linear shear flow field near a flat wall , 1994, Journal of Fluid Mechanics.

[13]  S. Takagi,et al.  Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid , 2002, Journal of Fluid Mechanics.

[14]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[15]  R. G. Cox,et al.  The lateral migration of spherical particles sedimenting in a stagnant bounded fluid , 1977, Journal of Fluid Mechanics.

[16]  R. H. Magarvey,et al.  TRANSITION RANGES FOR THREE-DIMENSIONAL WAKES , 1961 .

[17]  S. K. Hsu,et al.  The lateral migration of solid particles in a laminar flow near a plane , 1977 .

[18]  Andreas Acrivos,et al.  The instability of the steady flow past spheres and disks , 1993, Journal of Fluid Mechanics.

[19]  H. Faxén,et al.  Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit , 1921 .

[20]  Fumio Takemura,et al.  The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number , 2003, Journal of Fluid Mechanics.

[21]  S. Taneda Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers , 1956 .

[22]  Toshihiro Tanaka,et al.  Experiment of Fluid Forces on a Rotating Sphere and Spheroid , 1990 .

[23]  Inchul Kim,et al.  Three-dimensional flow over two spheres placed side by side , 1993, Journal of Fluid Mechanics.