Evolution of cnidarian trans‐defensins: Sequence, structure and exploration of chemical space

Many of the small, cysteine‐rich ion‐channel modulatory peptides found in Cnidaria are distantly related to vertebrate defensins (of the trans‐defensin superfamily). Transcriptomic and proteomic studies of the endemic Australian speckled sea anemone (Oulactis sp.) yielded homologous peptides to known defensin sequences. We extended these data using existing and custom‐built hidden Markov models to extract defensin‐like families from the transcriptomes of seven endemic Australian cnidarian species. Newly sequenced transcriptomes include three species of Actiniaria (true sea anemones); the speckled anemone (Oulactis sp.), Oulactis muscosa, Dofleinia cf. armata and a species of Corallimorpharia, Rhodactis sp. We analyzed these novel defensin‐like sequences along with published homologues to study the evolution of their physico‐chemical properties in vertebrate and invertebrate fauna. The cnidarian trans‐defensins form a distinct cluster within the chemical space of the superfamily, with a unique set of motifs and biophysical properties. This cluster contains identifiable subgroups, whose distribution in chemical space also correlates with the divergent evolution of their structures. These sequences, currently restricted to cnidarians, form an evolutionarily distinct clade within the trans‐defensin superfamily.

[1]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[2]  Thomas Shafee,et al.  A quantitative map of protein sequence space for the cis‐defensin superfamily , 2018, Bioinform..

[3]  O. Chernikov,et al.  Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor. , 2018, Journal of proteomics.

[4]  B. Willis,et al.  Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef‐building coral , 2018, Molecular ecology.

[5]  Jonas S. Almeida,et al.  Alignment-free sequence comparison: benefits, applications, and tools , 2017, Genome Biology.

[6]  Tae Kwan Lee,et al.  Defensin‐neurotoxin dyad in a basally branching metazoan sea anemone , 2017, The FEBS journal.

[7]  G. King,et al.  Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. , 2017, Journal of proteomics.

[8]  K. Mineev,et al.  New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties , 2017, Toxins.

[9]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[10]  Marilyn A. Anderson,et al.  Convergent evolution of defensin sequence, structure and function , 2017, Cellular and Molecular Life Sciences.

[11]  Thomas M A Shafee,et al.  AlignStat: a web-tool and R package for statistical comparison of alternative multiple sequence alignments , 2016, BMC Bioinformatics.

[12]  Marilyn A. Anderson,et al.  The Defensins Consist of Two Independent, Convergent Protein Superfamilies. , 2016, Molecular biology and evolution.

[13]  S. Withers,et al.  Potent Human α-Amylase Inhibition by the β-Defensin-like Protein Helianthamide , 2016, ACS central science.

[14]  Marilyn A. Anderson,et al.  Structural homology guided alignment of cysteine rich proteins , 2016, SpringerPlus.

[15]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[16]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[17]  Y. Li,et al.  Evolution of primate α and θ defensins revealed by analysis of genomes , 2014, Molecular Biology Reports.

[18]  Tristan J. Lubinski,et al.  Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian , 2014, BMC Genomics.

[19]  C. Betzel,et al.  Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. , 2013, Acta crystallographica. Section D, Biological crystallography.

[20]  B. Bean,et al.  Modulation of neuronal sodium channels by the sea anemone peptide BDS-I. , 2012, Journal of neurophysiology.

[21]  S. Sunagawa,et al.  Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals , 2012, PloS one.

[22]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[23]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[24]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[25]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[26]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[27]  P. Sautière,et al.  Innate Immune Responses of a Scleractinian Coral to Vibriosis* , 2011, The Journal of Biological Chemistry.

[28]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[29]  H. Kwok,et al.  Novel venom proteins produced by differential domain-expression strategies in beaded lizards and gila monsters (genus Heloderma). , 2010, Molecular biology and evolution.

[30]  J. Norman,et al.  Identical Skin Toxins by Convergent Molecular Adaptation in Frogs , 2010, Current Biology.

[31]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[32]  M. Leippe,et al.  Hydramacin-1, Structure and Antibacterial Activity of a Protein from the Basal Metazoan Hydra* , 2008, Journal of Biological Chemistry.

[33]  S. Nishimura,et al.  A novel beta-defensin structure: a potential strategy of big defensin for overcoming resistance by Gram-positive bacteria. , 2008, Biochemistry.

[34]  A Keith Dunker,et al.  TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. , 2008, Protein and peptide letters.

[35]  J. Finnerty,et al.  Intron retention as a posttranscriptional regulatory mechanism of neurotoxin expression at early life stages of the starlet anemone Nematostella vectensis. , 2008, Journal of molecular biology.

[36]  Anthony T Papenfuss,et al.  Defensins and the convergent evolution of platypus and reptile venom genes. , 2008, Genome research.

[37]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[38]  Joseph F. Ryan,et al.  StellaBase: The Nematostella vectensis Genomics Database , 2005, Nucleic Acids Res..

[39]  Robert Huber,et al.  The three-dimensional structures of tick carboxypeptidase inhibitor in complex with A/B carboxypeptidases reveal a novel double-headed binding mode. , 2005, Journal of molecular biology.

[40]  M. Lazdunski,et al.  Solution structure of APETx1 from the sea anemone Anthopleura elegantissima: A new fold for an HERG toxin , 2005, Proteins.

[41]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[42]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[43]  M. Lazdunski,et al.  APETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels. , 2003, Molecular pharmacology.

[44]  Robert Blumenthal,et al.  The Structure of Human β-Defensin-2 Shows Evidence of Higher Order Oligomerization* , 2000, The Journal of Biological Chemistry.

[45]  P. Kuchel,et al.  Solution structure of a defensin-like peptide from platypus venom. , 1999, The Biochemical journal.

[46]  M. Lazdunski,et al.  Sea Anemone Peptides with a Specific Blocking Activity against the Fast Inactivating Potassium Channel Kv3.4* , 1998, The Journal of Biological Chemistry.

[47]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[48]  R. Norton,et al.  Refined structure in solution of the sea anemone neurotoxin ShI. , 1995, The Journal of biological chemistry.

[49]  L. Llewellyn,et al.  Binding of the sea anemone polypeptide BDS II to the voltage-gated sodium channel. , 1991, Biochemistry international.

[50]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[51]  B. Dunn,et al.  Isolation, characterization, and amino acid sequence of a polypeptide neurotoxin occurring in the sea anemone Stichodactyla helianthus. , 1989, Biochemistry.

[52]  A M Gronenborn,et al.  Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: a study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. , 1989, Biochemistry.

[53]  G. Schmidt Replacement of Discharged Cnidae in the Tentacles of Anemonia Sulcata , 1982, Journal of the Marine Biological Association of the United Kingdom.

[54]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[55]  Shunyi Zhu,et al.  Evolutionary origin of β-defensins. , 2013, Developmental and comparative immunology.

[56]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .