The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules.

In this paper we will calculate the effect of spin–orbit coupling on properties of closed shell molecules, using the zero‐order regular approximation to the Dirac equation. Results are obtained using density functionals including density gradient corrections. Close agreement with experiment is obtained for the calculated molecular properties of a number of heavy element diatomic molecules.

[1]  J. G. Snijders,et al.  EXACT SOLUTIONS OF REGULAR APPROXIMATE RELATIVISTIC WAVE EQUATIONS FOR HYDROGEN-LIKE ATOMS , 1994 .

[2]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on the gold atom and gold hydride in the framework of the douglas-kroll transformation , 1994 .

[3]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[4]  Ingvar Lindgren,et al.  Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure , 1986 .

[5]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[6]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[7]  L. Seijo Relativistic ab initio model potential calculations including spin–orbit effects through the Wood–Boring Hamiltonian , 1995 .

[8]  H. Liebermann,et al.  Relativistic configuration interaction study of the low‐lying electronic states of Bi2 , 1995 .

[9]  J. Wood Atomic multiplet structures obtained from Hartree-Fock, statistical exchange and local spin density approximations , 1980 .

[10]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[11]  V. Kellö,et al.  Estimates of relativistic contributions to molecular properties , 1990 .

[12]  W. C. Ermler,et al.  AB initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions , 1981 .

[13]  K. Balasubramanian,et al.  Electronic dipole and transition moments from the relativistic CI wave function: Application to HI , 1987 .

[14]  K. Pitzer Relativistic calculations of dissociation energies and related properties , 1982 .

[15]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[16]  J. G. Snijders,et al.  On the nature of the first excited states of the uranyl ion , 1984 .

[17]  W. C. Ermler,et al.  Spin-Orbit Coupling and Other Relativistic Effects in Atoms and Molecules , 1988 .

[18]  Tom Ziegler,et al.  The influence of self‐consistency on nonlocal density functional calculations , 1991 .

[19]  C. E. Moore Atomic Energy Levels. As Derived From the Analyses of Optical Spectra. Volume 3 , 1952 .

[20]  K. Balasubramanian,et al.  Relativistic configuration interaction calculations of the low‐lying states of TlF , 1985 .

[21]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[22]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[23]  M. Pélissier,et al.  Ab initio molecular calculations including spin-orbit coupling. I. Method and atomic tests , 1983 .

[24]  L. Radom,et al.  Extension of Gaussian‐2 (G2) theory to bromine‐ and iodine‐containing molecules: Use of effective core potentials , 1995 .

[25]  M. Schlüter,et al.  Self-consistent second-order perturbation treatment of multiplet structures using local-density theory , 1981 .

[26]  J. G. Snijders,et al.  A relativistic lcao hartree-fock-slater investigation of the electronic structure of the actinocenes M(COT)2, M = Th, Pa, U, Np AND Pu , 1988 .

[27]  Four component regular relativistic Hamiltonians and the perturbational treatment of Dirac’s equation , 1995 .

[28]  O. Matsuoka,et al.  All-electron Dirac—Fock—Roothaan calculations on lead oxide , 1993 .

[29]  Ph. Durand,et al.  Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory , 1986 .

[30]  J. G. Snijders,et al.  Perturbation versus variation treatment of regular relativistic Hamiltonians , 1996 .

[31]  Balasubramanian,et al.  Theoretical study of the negative ions of HBr and HI. , 1988, Physical review. A, General physics.

[32]  William F. Meggers,et al.  Quantum Theory of Atomic Structure , 1960 .

[33]  K. Dyall All-electron molecular Dirac-Hartree-Fock calculations: Properties of the group IV monoxides GeO, SnO and PbO , 1993 .

[34]  G. Shortley,et al.  The Theory of Atomic Spectra , 1935 .

[35]  S. Shaik,et al.  Ab initio calculations for small iodo clusters. Good performance of relativistic effective core potentials , 1995 .

[36]  Ramos,et al.  Relativistic effects in bonding and dipole moments for the diatomic hydrides of the sixth-row heavy elements. , 1988, Physical review. A, General physics.

[37]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[38]  M. Pélissier,et al.  Relativistic calculations of excited states of molecular iodine , 1994 .

[39]  K. Pitzer RELATIVISTIC MODIFICATIONS OF COVALENT BONDING IN HEAVY ELEMENTS: CALCULATIONS FOR TlH , 1981 .

[40]  N. Rösch,et al.  A scalar-relativistic extension of the linear combination of Gaussian-type orbitals local density functional method: application to AuH, AuCl and Au2 , 1992 .

[41]  J. G. Snijders,et al.  A perturbation theory approach to relativistic calculations: II. Molecules , 1979 .

[42]  Peter Schwerdtfeger,et al.  Relativistic and correlation effects in pseudopotential calculations for Br, I, HBr, HI, Br2, and I2 , 1986 .

[43]  O. Matsuoka Relativistic self-consistent-field methods for molecules. III. All-electron calculations on diatomics HI, HI + , AtH, and AtH + , 1992 .

[44]  P. Schwerdtfeger Relativistic and electron-correlation contributions in atomic and molecular properties: benchmark calculations on Au and Au2 , 1991 .

[45]  U. V. Barth,et al.  Local-density theory of multiplet structure , 1979 .

[46]  A. J. Sadlej The dipole moment of AuH , 1991 .

[47]  V. Kellö,et al.  Quasirelativistic studies of molecular electric properties: Dipole moments of the group IVa oxides and sulfides , 1993 .

[48]  A. Becke,et al.  Extension of the local-spin-density exchange-correlation approximation to multiplet states , 1995 .

[49]  Kenneth S. Pitzer,et al.  RELATIVISTIC EFFECTS ON CHEMICAL PROPERTIES , 1979 .