Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis

[1]  T. Iizumi,et al.  Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: Application of a Bayesian approach , 2009 .

[2]  Jiyuan Liu,et al.  Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends , 2008 .

[3]  Andrew J. Challinor,et al.  Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops , 2008 .

[4]  Andrew J. Challinor,et al.  Crop yield reduction in the tropics under climate change: Processes and uncertainties , 2008 .

[5]  T. Sakamoto,et al.  Global warming, rice production, and water use in China: Developing a probabilistic assessment , 2008 .

[6]  J. Soussana,et al.  Crop and pasture response to climate change , 2007, Proceedings of the National Academy of Sciences.

[7]  D. Timlin,et al.  Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2 , 2007 .

[8]  L. H. Allen,et al.  Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean , 2007 .

[9]  P. Xie,et al.  A Gauge-Based Analysis of Daily Precipitation over East Asia , 2007 .

[10]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[11]  C. Müller,et al.  Modelling the role of agriculture for the 20th century global terrestrial carbon balance , 2007 .

[12]  Andrew J. Challinor,et al.  Development and assessment of a coupled crop–climate model , 2007 .

[13]  G. Fischer,et al.  Crop response to elevated CO2 and world food supply A comment on: Food for Thought... by Long et al., Science 312: 1918-1921, 2006 , 2007 .

[14]  M. Yokozawa,et al.  Climate changes and trends in phenology and yields of field crops in China, 1981-2000 , 2006 .

[15]  S. Long,et al.  Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations , 2006, Science.

[16]  L. White,et al.  Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction , 2006 .

[17]  Michael T. Coe,et al.  Root-Water-Uptake Based upon a New Water Stress Reduction and an Asymptotic Root Distribution Function , 2006 .

[18]  D. Timlin,et al.  Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment , 2006 .

[19]  Andrew J. Challinor,et al.  Simulation of the impact of high temperature stress on annual crop yields , 2005 .

[20]  A. Challinor,et al.  Quantification of physical and biological uncertainty in the simulation of the yield of a tropical crop using present-day and doubled CO2 climates , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  M. Lieffering,et al.  Modeling the interactive effects of atmospheric CO2 and N on rice growth and yield , 2005 .

[22]  W. Knorr,et al.  Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling , 2005 .

[23]  Fulu Tao,et al.  Remote sensing of crop production in China by production efficiency models: models comparisons, estimates and uncertainties , 2005 .

[24]  T. D. Mitchell,et al.  An improved method of constructing a database of monthly climate observations and associated high‐resolution grids , 2005 .

[25]  Shaun Quegan,et al.  Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications , 2005 .

[26]  B O B B,et al.  Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations , 2005 .

[27]  M. R. R A U Pa C H,et al.  Model – data synthesis in terrestrial carbon observation : methods , data requirements and data uncertainty specifications , 2005 .

[28]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[29]  A. Challinor,et al.  Design and optimisation of a large-area process-based model for annual crops , 2004 .

[30]  F. Dohleman,et al.  Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free‐air concentration enrichment (FACE) , 2004 .

[31]  A. Rogers,et al.  Rising atmospheric carbon dioxide: plants FACE the future. , 2004, Annual review of plant biology.

[32]  G. Farquhar,et al.  Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light , 1985, Planta.

[33]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[34]  J. Morison,et al.  Photosynthesis, water use and growth of a C4 grass stand at high CO2 concentration , 2004, Photosynthesis Research.

[35]  Randhir Singh,et al.  Effect of water stress on photosynthesis and in vitro activities of the PCR cycle enzymes in pigeonpea (Cajanus cajan L.) , 2004, Photosynthesis Research.

[36]  Fulu Tao,et al.  Changes in agricultural water demands and soil moisture in China over the last half-century and their effects on agricultural production , 2003 .

[37]  Huajun Tang,et al.  Mapping Single‐, Double‐, and Triple‐crop Agriculture in China at 0.5° × 0.5° by Combining County‐scale Census Data with a Remote Sensing‐derived Land Cover Map , 2003 .

[38]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[39]  James W. Jones,et al.  Adaptation and evaluation of the CROPGRO-soybean model to predict regional yield and production ☆ , 2002 .

[40]  F. Tubiello,et al.  Simulating the effects of elevated CO2 on crops: approaches and applications for climate change , 2002 .

[41]  P. Curtis,et al.  A meta‐analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield , 2002 .

[42]  C. Tucker,et al.  Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98 , 2002 .

[43]  Peiwu Wang,et al.  Leaf Temperature and Transpiration of Field Grown Cotton and Soybean under Arid and Humid Conditions , 2002 .

[44]  H. Velthuizen,et al.  Climate Change and Agricultural Vulnerability , 2002 .

[45]  C. Hays,et al.  Comparison of Agricultural Impacts of Climate Change Calculated from High and Low Resolution Climate Change Scenarios: Part I. The Uncertainty Due to Spatial Scale , 2001 .

[46]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[47]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[48]  Mark G. Tjoelker,et al.  Modelling respiration of vegetation: evidence for a general temperature‐dependent Q10 , 2001 .

[49]  Stephen Sitch,et al.  The Carbon Balance of the Terrestrial Biosphere: Ecosystem Models and Atmospheric Observations , 2000 .

[50]  P. V. Vara Prasad,et al.  Temperature variability and the yield of annual crops , 2000 .

[51]  Mikhail A. Semenov,et al.  Modelling nitrogen uptake and redistribution in wheat , 2000 .

[52]  R. Martin,et al.  Seasonal maize forecasting for South Africa and Zimbabwe derived from an agroclimatological model , 2000 .

[53]  Philippe Debaeke,et al.  Simulation of Maize Yield under Water Stress with the EPICphase and CROPWAT Models , 2000 .

[54]  James W. Jones,et al.  Short survey Scaling-up crop models for climate variability applications $ , 2000 .

[55]  Descriptors Adult,et al.  of Agriculture, Washington, DC.; , 2000 .

[56]  John S. J. Hsu,et al.  Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers , 1999 .

[57]  L. Kergoat A model for hydrological equilibrium of leaf area index on a global scale , 1998 .

[58]  James W. Jones,et al.  Soybean leaf water potential responses to carbon dioxide and drought , 1998 .

[59]  A. Jarvis,et al.  The coupled response of stomatal conductance to photosynthesis and transpiration , 1998 .

[60]  Steven W. Leavit Biogeochemistry, An Analysis of Global Change , 1998 .

[61]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[62]  I. C. Prentice,et al.  BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types , 1996 .

[63]  I. Prentice,et al.  A general model for the light-use efficiency of primary production , 1996 .

[64]  R. Dewar The Correlation between Plant Growth and Intercepted Radiation: An Interpretation in Terms of Optimal Plant Nitrogen Content , 1996 .

[65]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[66]  J. Bunce Growth at elevated carbon dioxide concentration reduces hydraulic conductance in alfalfa and soybean , 1996 .

[67]  R. Gifford,et al.  Elevated CO2 Effects on Water Use and Growth of Maize in Wet and Drying Soil , 1996 .

[68]  P. Pinter,et al.  Productivity and water use of wheat under free‐air CO2 enrichment , 1995 .

[69]  Dominique Bachelet,et al.  Modelling the Impact of Climate Change on Rice Production in Asia , 1995 .

[70]  R. Neilson A Model for Predicting Continental‐Scale Vegetation Distribution and Water Balance , 1995 .

[71]  John L. Monteith,et al.  Accommodation between transpiring vegetation and the convective boundary layer , 1995 .

[72]  Martin J. Kropff,et al.  The rice simulation model SIMRIW and its testing , 1995 .

[73]  T. Horie The rice crop simulation model SIMRIW and its testing , 1995 .

[74]  J. Hunt,et al.  Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI , 1994 .

[75]  Ross E. McMurtrie,et al.  Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures , 1993 .

[76]  I. Colinprentice,et al.  A simulation model for the transient effects of climate change on forest landscapes , 1993 .

[77]  D. Z. Haman,et al.  Soil Plant Water Relationships 1 , 1993 .

[78]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[79]  T. Mansfield,et al.  Atmospheric pollution and the sensitivity of stomata on barley leaves to abscisic acid and carbon dioxide , 1991 .

[80]  K. G. McNaughton,et al.  Effects of spatial scale on stomatal control of transpiration , 1991 .

[81]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[82]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[83]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[84]  D. F. Grigal,et al.  Vertical root distributions of northern tree species in relation to successional status , 1987 .

[85]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[86]  J. Morison,et al.  Intercellular CO_2 Concentration and Stomatal Response to CO_2 , 1987 .

[87]  F. Woodward Climate and plant distribution , 1987 .

[88]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[89]  B. Acock,et al.  Crop responses to carbon dioxide doubling: a literature survey , 1986 .

[90]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[91]  K. G. McNaughton,et al.  Stomatal Control of Transpiration: Scaling Up from Leaf to Region , 1986 .

[92]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  J. Morison,et al.  Plant Growth and Water Use With Limited Water Supply in High CO2 Concentrations. II. Plant Dry Weight, Partitioning and Water Use Efficiency , 1984 .

[94]  G. Bingham,et al.  Photosynthesis and Stomatal Conductance with CO2‐Enrichment of Containerand Field‐Grown Soybeans1 , 1984 .

[95]  J. Morison,et al.  Plant Growth and Water Use With Limited Water Supply in High CO2 Concentrations. I. Leaf Area, Water Use and Transpiration , 1984 .

[96]  G. Bingham,et al.  Responses of Selected Plant Species to Elevated Carbon Dioxide in the Field , 1983 .

[97]  S. B. Idso,et al.  Increasing atmospheric CO2: effects on crop yield, water use and climate , 1983 .

[98]  Graham D. Farquhar,et al.  Modelling of Photosynthetic Response to Environmental Conditions , 1982 .

[99]  J. Bunce Comparative Responses of Leaf Conductance to Humidity in Single Attached Leaves , 1981 .

[100]  J. Doorenbos,et al.  Yield response to water , 1979 .

[101]  W. Larcher Physiological Plant Ecology , 1977 .

[102]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[103]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[104]  Richard Von Mises,et al.  Mathematical Theory of Probability and Statistics , 1966 .

[105]  W. Ruhland Encyclopedia of plant physiology. , 1958 .

[106]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[107]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .

[108]  V. Weisskopf THE INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS , 2022 .