Automatic Tuning of Model Predictive Control Using Particle Swarm Optimization

This paper presents an automatic tuning method of model predictive control (MPC) using particle swarm optimization (PSO). Although conventional PID is difficult to treat constraints and future plant dynamics, MPC can treat this issues and practical control can be realized in various industrial problems. One of the challenges in MPC is how control parameters can be tuned for various target plants and usage of PSO for automatic tuning is one of the solutions. The numerical results show the effectiveness of the proposed PSO-based automatic tuning method

[1]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[2]  S. Drogies,et al.  Predictive control: propositions for the design methodology , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[3]  A. Bemporad,et al.  Model predictive control - new tools for design and evaluation , 2004, Proceedings of the 2004 American Control Conference.

[4]  Jan M. Maciejowski,et al.  Tuning MPC using H-infinity loop shaping , 2000 .

[5]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[6]  Yasuo Takagi,et al.  A new input/output constrained model predictive control with frequency domain tuning technique and its application to an ethylene plant , 1993, Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics.

[7]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[8]  Yoshikazu Fukuyama,et al.  Comparison of particle swarm optimizations for optimal operational planning of energy plants , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[9]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[10]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[11]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[12]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[13]  Ronald Soeterboek,et al.  Predictive control : by R. Soeterboek. Prentice Hall International (U.K.) Limited, Hemel Hempstead, U.K. (1992). ISBN 0-13-678350-3, $73.00, £42.99 , 1994, Autom..

[14]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[15]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[16]  J. L. Testud,et al.  Paper: Model predictive heuristic control , 1978 .

[17]  Zhao Hui,et al.  Optimal Design of Power System Stabilizer Using Particle Swarm Optimization , 2006 .

[18]  Yoshikazu Fukuyama,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 2000 .