Beyond Binary Search: Parallel In-Place Construction of Implicit Search Tree Layouts
暂无分享,去创建一个
Henri Casanova | Nodari Sitchinava | Ben Karsin | Kyle Berney | Alyssa Higuchi | H. Casanova | N. Sitchinava | Ben Karsin | Kyle Berney | Alyssa Higuchi | Nodari Sitchinava
[1] Richard E. Ladner,et al. A Comparison of Cache Aware and Cache Oblivious Static Search Trees Using Program Instrumentation , 2000, Experimental Algorithmics.
[2] Timothy J. Purcell. Sorting and searching , 2005, SIGGRAPH Courses.
[3] Daniele D'Angeli,et al. Shuffling matrices, Kronecker product and Discrete Fourier Transform , 2016, Discret. Appl. Math..
[4] Alok Aggarwal,et al. The input/output complexity of sorting and related problems , 1988, CACM.
[5] W. H. Inmon,et al. Dw 2.0: The Architecture for the Next Generation of Data Warehousing , 2008 .
[6] Michael T. Goodrich,et al. Fundamental parallel algorithms for private-cache chip multiprocessors , 2008, SPAA '08.
[7] Fabio Cannizzo,et al. A fast and vectorizable alternative to binary search in O(1) with wide applicability to arrays of floating point numbers , 2015, J. Parallel Distributed Comput..
[8] Harold S. Stone,et al. Parallel Processing with the Perfect Shuffle , 1971, IEEE Transactions on Computers.
[9] M. V. Wilkes,et al. The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .
[10] Richard P. Brent,et al. The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.
[11] Nodari Sitchinava,et al. Empirical Evaluation of the Parallel Distribution Sweeping Framework on Multicore Architectures , 2013, ESA.
[12] John A. Ellis,et al. Computing the cycles in the perfect shuffle permutation , 2000, Inf. Process. Lett..
[13] Peiyush Jain. A Simple In-Place Algorithm for In-Shuffle , 2008, ArXiv.
[14] Jeffrey Scott Vitter,et al. Algorithms and Data Structures for External Memory , 2008, Found. Trends Theor. Comput. Sci..
[15] Christian Ronse,et al. A generalization of the perfect shuffle , 1983, Discret. Math..
[16] Faith Ellen,et al. Permuting in Place , 1995, SIAM J. Comput..
[17] Gerth Stølting Brodal,et al. Cache oblivious search trees via binary trees of small height , 2001, SODA '02.
[18] Ulrike Stege,et al. A Provably, Linear Time, In-place and Stable Merge Algorithm via the Perfect Shuffle , 2015, ArXiv.
[19] William M. Kantor,et al. The mathematics of perfect shuffles , 1983 .
[20] John A. Ellis,et al. In situ, Stable Merging by Way of the Perfect Shuffle , 2000, Comput. J..
[21] Pat Morin,et al. Array Layouts for Comparison-Based Searching , 2015, ACM J. Exp. Algorithmics.
[22] Mehmet Emin Dalkiliç,et al. A simple shuffle-based stable in-place merge algorithm , 2011, WCIT.
[23] Marc Davio,et al. Kronecker products and shuffle algebra , 1981, IEEE Transactions on Computers.
[24] Yi-Jen Chiang,et al. Experiments on the Practical I/O Efficiency of Geometric Algorithms: Distribution Sweep vs. Plane Sweep , 1995, WADS.
[25] S. Sitharama Iyengar,et al. Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.
[26] Frank Ruskey,et al. In-place permuting and perfect shuffling using involutions , 2012, Inf. Process. Lett..
[27] Sayyada Fahmeeda Sultana,et al. Video Encryption Algorithm and Key Management using Perfect Shuffle , 2017 .
[28] Jeffrey Shallit,et al. The Cycles of the Multiway Perfect Shuffle Permutation , 2002, Discret. Math. Theor. Comput. Sci..
[29] M. G.,et al. In Situ , 2021, Encyclopedic Dictionary of Archaeology.
[30] R. Bayer,et al. Organization and maintenance of large ordered indices , 1970, SIGFIDET '70.