A Differential Operator Approach to Equational Differential Invariants - (Invited Paper)

Hybrid systems, i.e., dynamical systems combining discrete and continuous dynamics, have a complete axiomatization in differential dynamic logic relative to differential equations. Differential invariants are a natural induction principle for proving properties of the remaining differential equations. We study the equational case of differential invariants using a differential operator view. We relate differential invariants to Lie’s seminal work and explain important structural properties resulting from this view. Finally, we study the connection of differential invariants with partial differential equations in the context of the inverse characteristic method for computing differential invariants.

[1]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[2]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[3]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[4]  Edmund M. Clarke,et al.  Computing differential invariants of hybrid systems as fixedpoints , 2008, Formal Methods Syst. Des..

[5]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[6]  André Platzer,et al.  The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..

[7]  André Platzer,et al.  Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..

[8]  Edmund M. Clarke,et al.  Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study , 2009, FM.

[9]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[10]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[11]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[12]  Eberhard Zeidler,et al.  Teubner-Taschenbuch der Mathematik , 2003 .

[13]  Robert Hermann,et al.  Sophus Lie's 1884 differential invariant paper , 1975 .

[14]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[15]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[16]  Sumit Gulwani,et al.  Constraint-Based Approach for Analysis of Hybrid Systems , 2008, CAV.

[17]  Ana Cavalcanti,et al.  FM 2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings , 2009, FM.

[18]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[19]  André Platzer,et al.  Real World Verification , 2009, CADE.

[20]  S. Lie,et al.  Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .

[21]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[22]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[23]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[24]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[26]  L. Evans,et al.  Partial Differential Equations , 1941 .

[27]  E. Allen Emerson,et al.  Computer Aided Verification , 2000, Lecture Notes in Computer Science.

[28]  D. Yu. Grigoryev,et al.  Complexity of quantifier elimination in the theory of ordinary differential equations , 1987, EUROCAL.

[29]  Edmund M. Clarke,et al.  Computing Differential Invariants of Hybrid Systems as Fixedpoints , 2008, CAV.

[30]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .

[31]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2004, Formal Methods Syst. Des..

[32]  Renate A. Schmidt Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings , 2009, CADE.

[33]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.