Optimal nonuniform signaling for Gaussian channels

Variable-rate data transmission schemes in which constellation points are selected according to a nonuniform probability distribution are studied. When the criterion is one of minimizing the average transmitted energy for a given average bit rate, the best possible distribution with which to select constellations points is a Maxwell-Boltzmann distribution. In principle, when constellation points are selected according to a Maxwell-Boltzmann distribution, the ultimate shaping gain ( pi e/6 or 1.53 dB) can be achieved in any dimension. Nonuniform signaling schemes can be designed by mapping simple variable-length prefix codes onto the constellation. Using the Huffman procedure, prefix codes can be designed that approach the optimal performance. These schemes provide a fixed-rate primary channel and a variable-rate secondary channel, and are easily incorporated into standard lattice-type coded modulation schemes. >

[1]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[2]  Jay N. Livingston Shaping using variable-size regions , 1992, IEEE Trans. Inf. Theory.

[3]  N. J. A. Sloane,et al.  New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.

[4]  Permutation Modulation Optimized Permutation Modulation , 1990 .

[5]  Lee-Fang Wei,et al.  Trellis-coded modulation with multidimensional constellations , 1987, IEEE Trans. Inf. Theory.

[6]  G. David Forney Trellis shaping , 1992, IEEE Trans. Inf. Theory.

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  A. Robert Calderbank,et al.  Nonequiprobable signaling on the Gaussian channel , 1990, IEEE Trans. Inf. Theory.

[9]  Richard E. Blahut,et al.  Digital transmission of information , 1990 .

[10]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[11]  N. J. A. Sloane,et al.  Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.

[12]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[13]  Frank R. Kschischang,et al.  Optimal shaping properties of the truncated polydisc , 1994, IEEE Trans. Inf. Theory.

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[16]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[17]  Cecil Hastings,et al.  Approximations for digital computers , 1955 .

[18]  G. David Forney,et al.  Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..

[19]  Richard D. Gitlin,et al.  An inband coding method for the transmission of secondary data , 1988, IEEE International Conference on Communications, - Spanning the Universe..

[20]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[21]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[22]  Richard W. Hamming,et al.  Coding and Information Theory , 1980 .

[23]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[24]  Toby Berger Minimum entropy quantizers and permutation codes , 1982, IEEE Trans. Inf. Theory.

[25]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[26]  G. David Forney,et al.  Multidimensional constellations. II. Voronoi constellations , 1989, IEEE J. Sel. Areas Commun..