Numerical investigation of BB-AMR scheme using entropy production as refinement criterion

ABSTRACT In this work, a parallel finite volume scheme on unstructured meshes is applied to fluid flow for multidimensional hyperbolic system of conservation laws. It is based on a block-based adaptive mesh refinement strategy which allows quick meshing and easy parallelisation. As a continuation and as an extension of a previous work, the useful numerical density of entropy production is used as mesh refinement criterion combined with a local time-stepping method to preserve the computational time. Then, we numerically investigate its efficiency through several test cases with a confrontation with exact solution or experimental data.

[1]  Long Chen FINITE VOLUME METHODS , 2011 .

[2]  Endre Süli,et al.  A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.

[3]  David R. O'Hallaron,et al.  Scalable Parallel Octree Meshing for TeraScale Applications , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[4]  Xu-Dong Liu,et al.  Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..

[5]  Deborah Greaves,et al.  Quadtree grid generation: Information handling, boundary fitting and CFD applications , 1996 .

[6]  Clausius Inequality Part IV , 1948, Hydrobiologia.

[7]  P. Helluy,et al.  Numerical schemes for low Mach wave breaking , 2007 .

[8]  Alioune Nar Sambe,et al.  Numerical wave breaking with macro-roughness , 2011 .

[9]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  Paul R. Woodward,et al.  Trade-Offs in Designing Explicit Hydrodynamical Schemes for Vector Computers , 1982 .

[11]  Tong Zhang,et al.  Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems , 1990 .

[12]  Tofigh Allahviranloo,et al.  Numerical solution of fuzzy differential equations by predictor-corrector method , 2007, Inf. Sci..

[13]  Jason Zx Zheng,et al.  Block-based Adaptive Mesh Refinement Finite-volume Scheme for Hybrid Multi-block Meshes , 2012 .

[14]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[15]  Richard Liska,et al.  Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..

[16]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[17]  Frédéric Golay,et al.  Block-based adaptive mesh refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows , 2015 .

[18]  S. Koshizuka A particle method for incompressible viscous flow with fluid fragmentation , 1995 .

[19]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[20]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[21]  Keh-Ming Shyue,et al.  An Eulerian Interface-Sharpening Algorithm for Compressible Gas Dynamics , 2012, HPSC.

[22]  Michael Williamschen,et al.  Parallel Anisotropic Block-based Adaptive Mesh Refinement Algorithm For Three-dimensional Flows , 2013 .

[23]  Mingliang Zhang,et al.  A two dimensional hydrodynamic and sediment transport model for dam break based on finite volume method with quadtree grid , 2011 .

[24]  Alexander Kurganov,et al.  Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..

[25]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[26]  Arnas Kaceniauskas Development of Efficient Interface Sharpening Procedure for Viscous Incompressible Flows , 2008, Informatica.

[27]  Thierry Coupez,et al.  Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing , 2013 .

[28]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[29]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[30]  Frédéric Golay,et al.  Adaptive multiscale scheme based on numerical density of entropy production for conservation laws , 2013 .

[31]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[32]  Thierry Coupez,et al.  Immersed stress method for fluid–structure interaction using anisotropic mesh adaptation , 2013 .

[33]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[34]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[35]  Alexander Kurganov,et al.  A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .

[36]  Jean-Marc Hérard,et al.  A LOCAL TIME-STEPPING DISCONTINUOUS GALERKIN ALGORITHM FOR THE MHD SYSTEM , 2009 .

[37]  S. Zaleski,et al.  Numerical simulation of droplets, bubbles and waves: state of the art , 2009 .