Numerical investigation of BB-AMR scheme using entropy production as refinement criterion
暂无分享,去创建一个
Thomas Altazin | Frédéric Golay | Mehmet Ersoy | Lyudmyla Yushchenko | Damien Sous | D. Sous | F. Golay | L. Yushchenko | M. Ersoy | T. Altazin
[1] Long Chen. FINITE VOLUME METHODS , 2011 .
[2] Endre Süli,et al. A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.
[3] David R. O'Hallaron,et al. Scalable Parallel Octree Meshing for TeraScale Applications , 2005, ACM/IEEE SC 2005 Conference (SC'05).
[4] Xu-Dong Liu,et al. Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..
[5] Deborah Greaves,et al. Quadtree grid generation: Information handling, boundary fitting and CFD applications , 1996 .
[6] Clausius Inequality. Part IV , 1948, Hydrobiologia.
[7] P. Helluy,et al. Numerical schemes for low Mach wave breaking , 2007 .
[8] Alioune Nar Sambe,et al. Numerical wave breaking with macro-roughness , 2011 .
[9] C. K. Thornhill,et al. Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[10] Paul R. Woodward,et al. Trade-Offs in Designing Explicit Hydrodynamical Schemes for Vector Computers , 1982 .
[11] Tong Zhang,et al. Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems , 1990 .
[12] Tofigh Allahviranloo,et al. Numerical solution of fuzzy differential equations by predictor-corrector method , 2007, Inf. Sci..
[13] Jason Zx Zheng,et al. Block-based Adaptive Mesh Refinement Finite-volume Scheme for Hybrid Multi-block Meshes , 2012 .
[14] Frédéric Gibou,et al. A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..
[15] Richard Liska,et al. Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..
[16] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[17] Frédéric Golay,et al. Block-based adaptive mesh refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows , 2015 .
[18] S. Koshizuka. A particle method for incompressible viscous flow with fluid fragmentation , 1995 .
[19] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[20] Ronald Fedkiw,et al. Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..
[21] Keh-Ming Shyue,et al. An Eulerian Interface-Sharpening Algorithm for Compressible Gas Dynamics , 2012, HPSC.
[22] Michael Williamschen,et al. Parallel Anisotropic Block-based Adaptive Mesh Refinement Algorithm For Three-dimensional Flows , 2013 .
[23] Mingliang Zhang,et al. A two dimensional hydrodynamic and sediment transport model for dam break based on finite volume method with quadtree grid , 2011 .
[24] Alexander Kurganov,et al. Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..
[25] Eitan Tadmor,et al. Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .
[26] Arnas Kaceniauskas. Development of Efficient Interface Sharpening Procedure for Viscous Incompressible Flows , 2008, Informatica.
[27] Thierry Coupez,et al. Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing , 2013 .
[28] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[29] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[30] Frédéric Golay,et al. Adaptive multiscale scheme based on numerical density of entropy production for conservation laws , 2013 .
[31] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[32] Thierry Coupez,et al. Immersed stress method for fluid–structure interaction using anisotropic mesh adaptation , 2013 .
[33] James P. Collins,et al. Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..
[34] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[35] Alexander Kurganov,et al. A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .
[36] Jean-Marc Hérard,et al. A LOCAL TIME-STEPPING DISCONTINUOUS GALERKIN ALGORITHM FOR THE MHD SYSTEM , 2009 .
[37] S. Zaleski,et al. Numerical simulation of droplets, bubbles and waves: state of the art , 2009 .