The circuit and physical design of the POWER4 microprocessor

The IBM POWER4 processor is a 174-milliontransistor chip that runs at a clock frequency of greater than 1.3 GHz. It contains two microprocessor cores, high-speed buses, and an on-chip memory subsystem. The complexity and size of POWER4, together with its high operating frequency, presented a number of significant challenges for its multisite design team. This paper describes the circuit and physical design of POWER4 and gives results that were achieved. Emphasis is placed on aspects of the design methodology, clock distribution, circuits, power, integration, and timing that enabled the design team to meet the project goals and to complete the design on schedule.

[1]  Huey Ling High Speed Binary Adder , 1981, IBM J. Res. Dev..

[2]  Mattan Kamon,et al.  FastHenry: A Multipole-Accelerated 3-D Inductance Extraction Program , 1993, 30th ACM/IEEE Design Automation Conference.

[3]  Daniel Brand,et al.  In the driver's seat of BooleDozer , 1994, Proceedings 1994 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[4]  Arvind Srinivasan,et al.  Verity - A formal verification program for custom CMOS circuits , 1995, IBM J. Res. Dev..

[5]  M.M. Pelella,et al.  Floating body effects in partially-depleted SOI CMOS circuits , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[6]  Kenneth L. Shepard,et al.  Design methodology for the S/390 Parallel Enterprise Server G4 microprocessors , 1997, IBM J. Res. Dev..

[7]  Ching-Te Chuang,et al.  Circuit design techniques for the high-performance CMOS IBM S/390 Parallel Enterprise Server G4 microprocessor , 1997, IBM J. Res. Dev..

[8]  Y. Lapid,et al.  A pseudo-hierarchical methodology for high performance microprocessor design , 1997, ISPD '97.

[9]  Keith A. Jenkins,et al.  When are transmission-line effects important for on-chip interconnections? , 1997 .

[10]  Keith A. Jenkins,et al.  Measurement and modeling of on-chip transmission line effects in a 400 MHz microprocessor , 1998, IEEE J. Solid State Circuits.

[11]  Sandip Kundu GateMaker: a transistor to gate level model extractor for simulation, automatic test pattern generation and verification , 1998, Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270).

[12]  Ching-Te Chuang,et al.  SOI for digital CMOS VLSI: design considerations and advances , 1998, Proc. IEEE.

[13]  Andrew R. Conn,et al.  Formulation of static circuit optimization with reduced size, degeneracy and redundancy by timing graph manipulation , 1999, 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051).

[14]  Gregory A. Northrop,et al.  Chip integration methodology for the IBM S/390 G5 and G6 custom microprocessors , 1999, IBM Journal of Research and Development.

[15]  Kenneth L. Shepard,et al.  Harmony: static noise analysis of deep submicron digital integrated circuits , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Ching-Te Chuang,et al.  SOI digital CMOS VLSI—a design perspective , 1999, DAC '99.

[17]  Philip N. Strenski,et al.  Gradient-based optimization of custom circuits using a static-timing formulation , 1999, DAC '99.

[18]  D.H. Allen,et al.  A 0.2 /spl mu/m 1.8 V SOI 550 MHz 64 b PowerPC microprocesser with copper interconnects , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[19]  Keith Diefendorff,et al.  Power4 focuses on memory bandwidth , 1999 .

[20]  J. Tran,et al.  A 2nd generation 440 ps SOI 64 b adder , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[21]  Kenneth L. Shepard,et al.  Static noise analysis for digital integrated circuits in partially-depleted silicon-on-insulator technology , 2000, Proceedings 37th Design Automation Conference.

[22]  M. Sherony,et al.  Impact of the gate-to-body tunneling current on SOI history effect , 2000, 2000 IEEE International SOI Conference. Proceedings (Cat. No.00CH37125).

[23]  H. H. Chen,et al.  CPAM: a common power analysis methodology for high-performance VLSI design , 2000, IEEE 9th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No.00TH8524).

[24]  Norman J. Rohrer,et al.  SOI circuit design concepts , 2000 .

[25]  Gregory A. Northrop,et al.  A semi-custom design flow in high-performance microprocessor design , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[26]  L. Sigal,et al.  15.5 A 1.1GHz First 64b Generation Z900 Microprocessor , 2001 .

[27]  Pong-Fei Lu,et al.  Physical design of a fourth-generation POWER GHz microprocessor , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[28]  Phillip Restle Technical visualizations in VLSI design , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[29]  Balaram Sinharoy,et al.  POWER4 system microarchitecture , 2002, IBM J. Res. Dev..

[30]  Gregory P. Rodgers,et al.  Infrastructure requirements for a large-scale, multi-site VLSI development project , 2002, IBM J. Res. Dev..