Updated semi‐discretization method for periodic delay‐differential equations with discrete delay

An updated version of the semi-discretization method is presented for periodic systems with a single discrete time delay. The delayed term is approximated as a weighted sum of two neighbouring discrete delayed state values and the transition matrix over a single period is determined. Stability charts are constructed for the damped and delayed Mathieu equation for different time-period/time-delay ratios. The convergence of the method is investigated by examples. Stability charts are constructed for 1 and 2 degree of freedom milling models. The codes of the algorithm are also attached in the appendix. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[2]  Gábor Stépán,et al.  Stability Boundaries of High-Speed Milling Corresponding to Period Doubling Are Essentially Closed Curves , 2003 .

[3]  B. Mann,et al.  Stability of Interrupted Cutting by Temporal Finite Element Analysis , 2003 .

[4]  C. Hsu,et al.  Stability Criteria for Second-Order Dynamical Systems With Time Lag , 1966 .

[5]  O. Daněk,et al.  Selbsterregte Schwingungen : An Werkzeugmaschinen , 1962 .

[6]  Rifat Sipahi,et al.  An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems , 2002, IEEE Trans. Autom. Control..

[7]  Balakumar Balachandran,et al.  Dynamics and stability of milling process , 2001 .

[8]  J. Milton,et al.  NOISE, MULTISTABILITY, AND DELAYED RECURRENT LOOPS , 1996 .

[9]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[10]  Gábor Stépán,et al.  Modelling nonlinear regenerative effects in metal cutting , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Balth van der Pol Jun. Doct.Sc. II. On the stability of the solutions of Mathieu's equation , 1928 .

[12]  Gábor Stépán,et al.  Semi‐discretization method for delayed systems , 2002 .

[13]  D. Segalman,et al.  Suppression of Regenerative Chatter via Impedance Modulation , 2000 .

[14]  Gábor Stépán,et al.  Stability chart for the delayed Mathieu equation , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  David E. Gilsinn,et al.  Approximating Limit Cycles of a Van der Pol Equation with Delay | NIST , 2004 .

[16]  David E. Gilsinn,et al.  Estimating Critical Hopf Bifurcation Parameters for a Second-Order Delay Differential Equation with Application to Machine Tool Chatter , 2002 .

[17]  Tony L. Schmitz,et al.  Effects of Radial Immersion and Cutting Direction on Chatter Instability in End-Milling , 2002 .

[18]  Dirk Roose,et al.  Collocation Methods for the Computation of Periodic Solutions of Delay Differential Equations , 2000, SIAM J. Sci. Comput..

[19]  Yusuf Altintas,et al.  Analytical Stability Prediction and Design of Variable Pitch Cutters , 1998, Manufacturing Science and Engineering.

[20]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[21]  Tony L. Schmitz,et al.  COMPARISON OF ANALYTICAL AND NUMERICAL SIMULATIONS FOR VARIABLE SPINDLE SPEED TURNING , 2003 .

[22]  Gábor Stépán,et al.  Balancing with Reflex Delay , 2000 .

[23]  Donato Trigiante,et al.  THEORY OF DIFFERENCE EQUATIONS Numerical Methods and Applications (Second Edition) , 2002 .

[24]  Richard E. DeVor,et al.  Analytical Stability Analysis of Variable Spindle Speed Machining , 2000 .

[25]  Sergey A. Voronov,et al.  Nonlinear dynamics of a machining system with two interdependent delays , 2002 .

[26]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[27]  Jian-Qiao Sun,et al.  A semi-discretization method for delayed stochastic systems , 2005 .

[28]  A. Pelster,et al.  Analytical approach for the Floquet theory of delay differential equations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Gábor Stépán,et al.  Stability of the Damped Mathieu Equation With Time Delay , 2003 .

[30]  B. J. Stone,et al.  A stability analysis of single-point machining with varying spindle speed , 1977 .

[31]  S. A. Tobias Machine-tool vibration , 1965 .

[32]  István Győri,et al.  Numerical approximations for a class of differential equations with time- and state-dependent delays , 1995 .

[33]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[34]  Junjie Wei,et al.  Qualitative analysis of a neural network model with multiple time delays , 1999 .

[35]  Gábor Stépán,et al.  Multiple chatter frequencies in milling processes , 2003 .

[36]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[37]  Tony L. Schmitz,et al.  EXPLORING ONCE-PER-REVOLUTION AUDIO SIGNAL VARIANCE AS A CHATTER INDICATOR , 2002 .

[38]  Haitao Ma,et al.  Stability of linear time‐periodic delay‐differential equations via Chebyshev polynomials , 2004 .

[39]  S. Sinha,et al.  An efficient computational scheme for the analysis of periodic systems , 1991 .