The effect of ligand substitution and water co-adsorption on the adsorption dynamics and energy level matching of amino-phenyl acid dyes on TiO2.

We perform a comparative theoretical analysis of adsorption of dyes NK1 (2E,4E-2-cyano-5-(4-dimethylaminophenyl)penta-2,4-dienoic acid) and NK7 (2E,4E-2-cyano-5-(4-diphenylaminophenyl)penta-2,4-dienoic acid) on clean and water-covered anatase (101) surfaces of TiO(2). Ligand substitution away from the anchoring group changes the energy level matching between the dye's LUMO and the oxide's conduction band. Monodentate binding and bidentate binding configurations of the dyes to TiO(2) are found to have similar adsorption energies even though the injection from the bidentate mode is found to dominate. Water has a strong effect on adsorption, inducing deprotonation and affecting strongly and differently between the dyes the energy level matching, leading to a shut-off of the injection from NK7 of bidentate adsorption configuration. Ab initio molecular dynamics simulations show a strong effect of nuclear motion on energy levels, specifically, increasing the driving force for injection in the monodentate regime.

[1]  F. Castellano,et al.  Viable alternative to N719 for dye-sensitized solar cells. , 2010, ACS applied materials & interfaces.

[2]  U. Diebold,et al.  Experimental Investigation of the Interaction of Water and Methanol with Anatase−TiO2(101) , 2003 .

[3]  Xu Zhang,et al.  Electron dynamics in dye-sensitized solar cells: effects of surface terminations and defects. , 2010, The journal of physical chemistry. B.

[4]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[5]  Gordon G. Wallace,et al.  Injection limitations in a series of porphyrin dye-sensitized solar cells , 2010 .

[6]  Filippo De Angelis,et al.  Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation , 2010 .

[7]  Carlo Adamo,et al.  Insights into Working Principles of Ruthenium Polypyridyl Dye-Sensitized Solar Cells from First Principles Modeling , 2011 .

[8]  Yoshitada Morikawa,et al.  Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals , 2007 .

[9]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[11]  F. Fabregat‐Santiago,et al.  Joint Photophysical and Electrical Analyses on the Influence of Conjugation Order in D-π-A Photosensitizers of Mesoscopic Titania Solar Cells , 2011 .

[12]  Haobin Wang,et al.  Theoretical Study of Photoinduced Electron-Transfer Processes in the Dye−Semiconductor System Alizarin−TiO2 , 2010 .

[13]  Michael Grätzel,et al.  An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. , 2010, Nature chemistry.

[14]  E. Kaxiras,et al.  Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends. , 2010, Nano letters.

[15]  Anders Hagfeldt,et al.  Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell , 1998 .

[16]  T. Carrington,et al.  Calculating anharmonic vibrational frequencies of molecules adsorbed on surfaces directly from ab initio energies with a molecule-independent method: H2O on Pt(111) , 2011 .

[17]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[18]  Annabella Selloni,et al.  Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations , 2000 .

[19]  Alex B. F. Martinson,et al.  Advancing beyond current generation dye-sensitized solar cells , 2008 .

[20]  Antonio Tilocca,et al.  Time-dependent DFT study of [Fe(CN)6]4- sensitization of TiO2 nanoparticles. , 2004, Journal of the American Chemical Society.

[21]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[22]  James R. Durrant,et al.  Electron Transfer Dynamics in Dye-Sensitized Solar Cells , 2011 .

[23]  Ralph Gebauer,et al.  Simulating Dye-Sensitized TiO2 Heterointerfaces in Explicit Solvent: Absorption Spectra, Energy Levels, and Dye Desorption , 2011 .

[24]  Li Wang,et al.  Water-mediated promotion of dye sensitization of TiO2 under visible light. , 2011, Journal of the American Chemical Society.

[25]  Laurence M. Peter,et al.  The Grätzel Cell: Where Next? , 2011 .

[26]  Neil A. Anderson,et al.  Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells , 2004 .

[27]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[28]  Jean Roncali,et al.  Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications , 2007 .

[29]  O. Dulub,et al.  Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). , 2009, Nature materials.

[30]  Atsushi Urakawa,et al.  An atomistic picture of the regeneration process in dye sensitized solar cells , 2010, Proceedings of the National Academy of Sciences.

[31]  Walter R. Duncan,et al.  Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by ab initio time-domain density functional theory. , 2008, Journal of the American Chemical Society.

[32]  Thomas W. Hamann,et al.  Dye-sensitized solar cell redox shuttles , 2011 .

[33]  J. Sanz,et al.  Direct vs Indirect Mechanisms for Electron Injection in Dye-Sensitized Solar Cells , 2011 .

[34]  Leone Spiccia,et al.  High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. , 2011, Nature chemistry.

[35]  V. Sundström,et al.  Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance. , 2011, Journal of Physical Chemistry A.

[36]  C. Domain,et al.  Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations , 2007 .

[37]  Satoshi Mikoshiba,et al.  Ionic liquid type dye-sensitized solar cells: increases in photovoltaic performances by adding a small amount of water , 2005 .

[38]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[39]  Peng Wang,et al.  Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks , 2010 .

[40]  Tsutomu Miyasaka,et al.  Toward Printable Sensitized Mesoscopic Solar Cells: Light-Harvesting Management with Thin TiO2 Films , 2011 .

[41]  Coby S. Tao,et al.  Natural resource limitations to terawatt-scale solar cells , 2011 .

[42]  Hiroshi Segawa,et al.  Derivative coupling constants of NK1, NK7 dyes and their relation to excited state dynamics in solar cell applications , 2011 .

[43]  Filippo De Angelis,et al.  Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. , 2010, ACS nano.

[44]  Annabella Selloni,et al.  Structure and energetics of stoichiometric TiO 2 anatase surfaces , 2001 .

[45]  A. Hagfeldt,et al.  Preventing Dye Aggregation on ZnO by Adding Water in the Dye-Sensitization Process , 2011 .

[46]  Jun-Ho Yum,et al.  Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. , 2011, ChemSusChem.

[47]  A. Hagfeldt,et al.  Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[48]  Anders Sandell,et al.  Mixed Dissociative and Molecular Water Adsorption on Anatase TiO2(101) , 2011 .

[49]  Victor S Batista,et al.  Inverse design and synthesis of acac-coumarin anchors for robust TiO2 sensitization. , 2011, Journal of the American Chemical Society.

[50]  R. Baer,et al.  Communication: Tailoring the optical gap in light-harvesting molecules. , 2011, The Journal of chemical physics.

[51]  D. Bowler,et al.  Adsorption of Thiophene-Conjugated Sensitizers on TiO2 Anatase (101) , 2010 .

[52]  J. Durrant,et al.  Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[53]  Jing Zhang,et al.  Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. , 2011, Journal of the American Chemical Society.

[54]  J. Weng,et al.  DFT Study of the Adsorption of Aspartic Acid on Pure, N-Doped, and Ca-Doped Rutile (110) Surfaces , 2011 .

[55]  Giulio Cerullo,et al.  Electron Transfer from Organic Aminophenyl Acid Sensitizers to Titanium Dioxide Nanoparticle Films , 2009 .

[56]  H. Rensmo,et al.  Influence of Water on the Electronic : and Molecular Surface Structures of Ru-Dyes at Nanostructured TiO2 , 2011 .

[57]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.