Deep crustal structure across the Challenger Deep: Tectonic deformation and strongly serpentinized layer

[1]  J. Liu,et al.  Geology, environment, and life in the deepest part of the world’s oceans , 2021, Innovation.

[2]  M. Leybourne,et al.  Glimpses of oceanic lithosphere of the Challenger Deep forearc segment in the southernmost Marianas: The 143°E transect, 5800–4200 m , 2020, Island Arc.

[3]  M. Gillard,et al.  The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins , 2019, Earth-Science Reviews.

[4]  Min Xu,et al.  Along-strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments , 2019, Geophysical Journal International.

[5]  W. Seyfried,et al.  Fluid discharge linked to bending of the incoming plate at the Mariana subduction zone , 2019, Geochemical Perspectives Letters.

[6]  J. Goff,et al.  Synthesis of Oceanic Crustal Structure From Two‐Dimensional Seismic Profiles , 2019, Reviews of Geophysics.

[7]  Min Xu,et al.  Deep Seismic Structure Across the Southernmost Mariana Trench: Implications for Arc Rifting and Plate Hydration , 2019, Journal of Geophysical Research: Solid Earth.

[8]  M. Reagan,et al.  Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation , 2019, Earth and Planetary Science Letters.

[9]  D. Dong,et al.  Subduction Erosion, Crustal Structure, and an Evolutionary Model of the Northern Yap Subduction Zone: New Observations From the Latest Geophysical Survey , 2019, Geochemistry, Geophysics, Geosystems.

[10]  D. Wiens,et al.  Water input into the Mariana subduction zone estimated from ocean-bottom seismic data , 2018, Nature.

[11]  S. Miura,et al.  Controlling factor of incoming plate hydration at the north-western Pacific margin , 2018, Nature Communications.

[12]  C. Ranero,et al.  Structure of oceanic crust and serpentinization at subduction trenches , 2018 .

[13]  X. Qiu,et al.  Postseafloor Spreading Volcanism in the Central East South China Sea and Its Formation Through an Extremely Thin Oceanic Crust , 2018 .

[14]  Katherine A. Kelley,et al.  Diffuse Extension of the Southern Mariana Margin , 2018 .

[15]  Jian Lin,et al.  Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench , 2017, Tectonophysics.

[16]  K. Michibayashi,et al.  Mantle hydration along outer-rise faults inferred from serpentinite permeability , 2017, Scientific Reports.

[17]  M. Gillard,et al.  Fault systems at hyper-extended rifted margins and embryonic oceanic crust: Structural style, evolution and relation to magma , 2016 .

[18]  X. Qiu,et al.  Crustal structure across the post-spreading magmatic ridge of the East Sub-basin in the South China Sea: Tectonic significance , 2016 .

[19]  K. Michibayashi,et al.  Physical properties and seismic structure of Izu‐Bonin‐Mariana fore‐arc crust: Results from IODP Expedition 352 and comparison with oceanic crust , 2015 .

[20]  G. Abers,et al.  Link between plate fabric, hydration and subduction zone seismicity in Alaska , 2015 .

[21]  D. Wiens,et al.  Incoming plate faulting in the Northern and Western Pacific and implications for subduction zone water budgets , 2015 .

[22]  Jian Lin,et al.  Mechanism for normal faulting in the subducting plate at the Mariana Trench , 2014 .

[23]  D. Wiens,et al.  Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling and subduction of hydrous minerals , 2014 .

[24]  H. Kopp,et al.  Seismic structure of the north‐central Chilean convergent margin: Subduction erosion of a paleomagmatic arc , 2014 .

[25]  M. Reagan,et al.  The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific , 2013 .

[26]  Simon L. Klemperer,et al.  An Overview of the Izu‐Bonin‐Mariana Subduction Factory , 2013 .

[27]  C. Ranero,et al.  Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches , 2012 .

[28]  H. Watanabe,et al.  A serpentinite-hosted ecosystem in the Southern Mariana Forearc , 2012, Proceedings of the National Academy of Sciences.

[29]  E. Flueh,et al.  Deep seismic structure of the Tonga subduction zone: Implications for mantle hydration, tectonic erosion, and arc magmatism , 2011 .

[30]  A. Calvert The Seismic Structure of Island Arc Crust , 2011 .

[31]  J. Bialas,et al.  Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data , 2010 .

[32]  N. Takahashi,et al.  Structural variations of arc crusts and rifted margins in the southern Izu‐Ogasawara arc–back arc system , 2009 .

[33]  J. Bialas,et al.  Intraplate seismicity and related mantle hydration at the Nicaraguan trench outer rise , 2009 .

[34]  G. Moore,et al.  Pacific Plate subduction beneath the central Mariana and Izu‐Bonin fore arcs: New insights from an old margin , 2008 .

[35]  E. Flueh,et al.  Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua , 2008 .

[36]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[37]  Brian Taylor,et al.  Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc , 2007 .

[38]  E. Flueh,et al.  Alteration of the subducting oceanic lithosphere at the southern central Chile trench–outer rise , 2007 .

[39]  J. Bialas,et al.  Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench , 2007 .

[40]  C. Ranero,et al.  Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench , 2004 .

[41]  Zohar Gvirtzman,et al.  Bathymetry of Mariana trench‐arc system and formation of the Challenger Deep as a consequence of weak plate coupling , 2004 .

[42]  J. Morgan,et al.  Bending-related faulting and mantle serpentinization at the Middle America trench , 2003, Nature.

[43]  Simon M. Peacock,et al.  Serpentinization of the forearc mantle , 2003 .

[44]  Fernando Martinez,et al.  Why is the Challenger Deep so deep , 2003 .

[45]  D. Miller,et al.  Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites , 2003 .

[46]  P. Kelemen,et al.  Methods for resolving the origin of large igneous provinces from crustal seismology , 2002 .

[47]  B. Evans,et al.  Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere , 2001 .

[48]  J. Hopper,et al.  Mantle thermal structure and active upwelling during continental breakup in the North Atlantic , 2001 .

[49]  J. Bialas,et al.  Crustal architecture and deep structure of the Ninetyeast Ridge hotspot trail from active‐source ocean bottom seismology , 2001 .

[50]  H. C. Larsen,et al.  Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography , 2000 .

[51]  T. Ishii,et al.  Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge , 1998 .

[52]  M. Bickle,et al.  Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge , 1997 .

[53]  T. Kanazawa,et al.  Continental Crust, Crustal Underplating, and Low-Q Upper Mantle Beneath an Oceanic Island Arc , 1996, Science.

[54]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[55]  R. White,et al.  Oceanic crustal thickness from seismic measurements and rare earth element inversions , 1992 .

[56]  Kazuo Kobayashi,et al.  Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean , 1992 .

[57]  T. Shipley,et al.  The seismic stratigraphy and sedimentary history of the east Mariana and Pigafetta Basins of the western Pacific , 1992 .

[58]  Robert B. Smith,et al.  Seismic traveltime inversion for 2-D crustal velocity structure , 1992 .

[59]  Douglas R. Toomey,et al.  Tomographic inversion of local earthquake data from the Hengill‐Grensdalur Central Volcano Complex, Iceland , 1989 .

[60]  H. Kanamori,et al.  Back-arc opening and the mode of subduction , 1979 .