A framework for dynamic implicit curve approximation by an irregular discrete approach

The approximation of implicit planar curves by line segments is a very classical problem. Many algorithms use interval analysis to approximate this curve, and to handle the topology of the final reconstruction. In this article, we use discrete geometry tools to build an original geometrical and topological representation of the implicit curve. The polygonal approximation contains few segments, and the Reeb graph permits to sum up efficiently the shape and the topology of the curve. Furthermore, we propose two algorithms to process local cells refinement and local cells grouping schemes. We illustrate these schemes with a global system that efficiently handles manual or automatic fast updates on the global reconstruction, by considering topological or geometrical constraints. We also compare the speed and the quality of our approach with two classical methods.

[1]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[2]  Tae-wan Kim,et al.  An efficient method for tracing planar implicit curves , 2006 .

[3]  Naoufel Werghi,et al.  A discrete Reeb graph approach for the segmentation of human body scans , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[4]  Jack Bresenham,et al.  A linear algorithm for incremental digital display of circular arcs , 1977, CACM.

[5]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[6]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .

[7]  Mei-Yuh Hwang,et al.  The SPHINX-II speech recognition system: an overview , 1993, Comput. Speech Lang..

[8]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[9]  Franck Hétroy Méthodes de partitionnement de surfaces , 2003 .

[10]  B. Mourrain,et al.  Visualisation of Implicit Algebraic Curves , 2007 .

[11]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, SIGGRAPH 2007.

[12]  Rosalyn Muskovitz Development of a basic two dimensional design course: a comparison between traditional and computer generated methodologies , 1996, COMG.

[13]  J. Stolfi,et al.  An Introduction to Affine Arithmetic , 2003 .

[14]  Shanying Xu,et al.  A Review on Interval Computation { Software and Applications ¤ , 2001 .

[15]  Arie E. Kaufman,et al.  Fundamentals of Surface Voxelization , 1995, CVGIP Graph. Model. Image Process..

[16]  Tony Tung Indexation 3D de bases de donnees d'objets par graphes de Reeb ameliores. (3D indexing of object databases using enhanced Reeb graphs) , 2005 .

[17]  Gert Vegter,et al.  Isotopic meshing of implicit surfaces , 2006, The Visual Computer.

[18]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .

[19]  Hanan Samet,et al.  Hierarchical Spatial Data Structures , 1989, SSD.

[20]  R. Forman Morse Theory for Cell Complexes , 1998 .

[21]  Jean-Daniel Boissonnat,et al.  Meshing implicit surfaces with certified topology title , 2003 .

[22]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[23]  Azriel Rosenfeld,et al.  Digital geometry , 2002, JCIS.

[24]  Eric Andres,et al.  Discrete analytical curve reconstruction without patches , 2005, Image Vis. Comput..

[25]  A. Buchmann Design and Implementation of Large Spatial Databases, First Symposium SSD'89, Santa Barbara, California, USA, July 17/18, 1989, Proceedings , 1990, Lecture Notes in Computer Science.

[26]  Gert Vegter,et al.  Isotopic approximation of implicit curves and surfaces , 2004, SGP '04.

[27]  Hélio Lopes,et al.  Robust adaptive approximation of implicit curves , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[28]  E. Primrose,et al.  Topologie des Surfaces , 1972, The Mathematical Gazette.

[29]  B. Mourrain,et al.  Meshing of Surfaces , 2006 .

[30]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[31]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[32]  Laure Tougne,et al.  Dynamic Reconstruction of Complex Planar Objects on Irregular Isothetic Grids , 2006, ISVC.

[33]  David Coeurjolly,et al.  Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids , 2006, Comput. Graph..

[34]  David Coeurjolly,et al.  Supercover Model and Digital Straight Line Recognition on Irregular Isothetic Grids , 2005, DGCI.

[35]  Laure Tougne,et al.  Topological and Geometrical Reconstruction of Complex Objects on Irregular Isothetic Grids , 2006, DGCI.