Minimum Dilation Triangulations for the Regular ngon

A T E X-Tips ausgeholfen hat.

[1]  Bernard Chazelle,et al.  A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.

[2]  M. Sharir,et al.  Computing the Detour of Polygonal Curves , 2002 .

[3]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[4]  David P. Dobkin,et al.  Delaunay graphs are almost as good as complete graphs , 1990, Discret. Comput. Geom..

[5]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[6]  Paul Chew,et al.  There are Planar Graphs Almost as Good as the Complete Graph , 1989, J. Comput. Syst. Sci..

[7]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[8]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[9]  Rolf Klein,et al.  On the Geometric Dilation of Finite Point Sets , 2003, ISAAC.

[10]  Carl Gutwin,et al.  The Delauney Triangulation Closely Approximates the Complete Euclidean Graph , 1989, WADS.

[11]  Andrzej Lingas,et al.  A Fast Algorithm for Approximating the Detour of a Polygonal Chain , 2001, ESA.

[12]  Pat Morin,et al.  Computing the Maximum Detour and Spanning Ratio of Planar Paths, Trees, and Cycles , 2002, STACS.

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Martin Aigner,et al.  Diskrete Mathematik , 1993, Vieweg Studium Aufbaukurs Mathematik = Advanced lectures in mathematics.

[15]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[16]  Gautam Das,et al.  WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .

[17]  Günter Rote,et al.  On the geometric dilation of curves and point sets , 2004 .