Vergleich verschiedener Parameter zur Bestimmung eines Index der myokardialen Perfusionsreserve zur Erkennung von Koronarstenosen mit kardiovaskulärer Magnetresonanztomographie

For the assessment of myocardial perfusion with cardiac magnetic resonance imaging, different semiquantitative parameters of the first pass signal intensity time curves can be calculated and myocardial perfusion reserve indices can be determined. In this study we evaluated the feasibility of different perfusion parameters and their perfusion reserve indices for the detection of significant coronary artery stenosis.¶   The signal intensity time curves of the first pass of a gadolinium-DTPA bolus injected via a central vein catheter before and after dipyridamole infusion were investigated in 15 patients with single vessel (stenosis ≥75% area reduction) and five patients without significant coronary artery disease. For the distinction of ischemic and nonischemic myocardial segments, semiquantitative parameters, such as maximal signal intensity, contrast appearance time, time to maximal signal intensity and the steepness of the signal intensity curve‘s upslope determined by a linear fit, were assessed after correction for the input function. For each parameter a myocardial perfusion reserve index was calculated and cut off values for the detection of significant coronary stenosis were defined. The diagnostic accuracy of each parameter was then examined prospectively in 36 patients with coronary artery disease and compared with coronary angiography.¶   Where as a distinction of ischemic and normal myocardium was possible with myocardial perfusion reserve indices, semiquantitative parameters at rest or after vasodilation alone did not allow such a distinction. The perfusion reserve index calculated from the upslope showed the most significant difference between ischemic and nonischemic myocardial segments (1.19±0.4 and 2.38±0.45, p<0.001) followed by maximum signal intensity, time to maximum signal intensity and contrast appearance time. Sensitivity, specificity and diagnostic accuracy was 87, 82 and 85% for the detection of hypoperfusion induced by significant coronary artery stenoses using the perfusion reserve index calculated from the upslope.¶   The steepness of the first pass signal intensity curve‘s upslope, determined by a linear fit, is a feasible parameter for the detection of significant coronary artery disease with MR. Based on a myocardial perfusion reserve index of this parameter, ischemic myocardium can be identified with high diagnostic accuracy. Zur Beurteilung der myokardialen Perfusion mit Magnetresonanztomographie können verschiedene Parameter der Signalintensitätskurven evaluiert, sowie ein Index zur Erkennung der Auswirkungen von Koronararterienstenosen ermittelt werden.¶   An 15 Patienten mit koronarer Eingefäßerkrankung (≥75%) und 5 Patienten ohne signifikante Koronararterienstenose wurden die first pass Signalintensitäts-Kurven eines zentralvenös injizierten Gadolinium DTPA-Bolus vor und nach Dipyridamolinfusion untersucht. Die zur Eingangsfunktion normalisierten Parameter maximale Signalintensität, Kontrastmittelankunftzeit, Einwaschzeit und die Anstiegssteilheit wurden ermittelt und ein Perfusionsreserve-Index für die einzelnen Parameter errechnet. Für jeden Parameter wurden Grenzwerte zur Unterscheidung ischämischer und nicht ischämischer Myokardareale definiert. Die diagnostische Genauigkeit der errechneten Grenzwerte zur Erkennung von Koronarstenosen (≥75%) wurden prospektiv an 36 Patienten untersucht und die Ergebnisse mit der Koronarangiographie verglichen.¶   Der aus der Anstiegssteilheit berechnete Perfusionsreserveindex (Grenzwert 1,5) ergab die beste diagnostische Genauigkeit zur Unterscheidung von ischämischen und nicht ischämischen Myokardarealen (1,19±0,4 und 2,38±0,45, p<0,001). Die Sensitivität, Spezifität und diagnostische Genauigkeit zur Erkennung von Koronarstenosen waren 87, 82 und 85%. Die Beurteilung der Werte nur in Ruhe oder nach Vasodilatation erlaubt keine sichere Erkennung von Koronarstenosen.¶   Die Anstiegssteilheit der first pass Signalintensitätskurve, ermittelt durch einen linearen Fit, ist der geeignetste Parameter zur Beurteilung der myokardialen Perfusionsreserve mit MRT. Ischämische Myokardareale können mit hoher diagnostischer Genauigkeit erfasst werden.

[1]  A. Distante,et al.  Myocardial Perfusion by Contrast Echocardiography: From Off‐Line Processing to Radio Frequency Analysis , 1991, Circulation.

[2]  V S Bamrah,et al.  Detection of chronic coronary artery disease: value of pharmacologically stressed, dynamically enhanced turbo-fast low-angle shot MR images. , 1993, AJR. American journal of roentgenology.

[3]  E. E. van der Wall,et al.  Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole sestamibi SPECT for detection of perfusion abnormalities in patients with one‐vessel coronary artery disease: Assessment by quantitative model fitting , 1996, Magnetic resonance in medicine.

[4]  K. Gould,et al.  Coronary flow reserve as a physiologic measure of stenosis severity. , 1990, Journal of the American College of Cardiology.

[5]  H. Oswald,et al.  Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. , 2000, Circulation.

[6]  R. Wilson,et al.  Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. , 1997, Radiology.

[7]  M Schwaiger,et al.  Myocardial perfusion imaging with PET. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  D. Saloner,et al.  Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR imaging in humans. Work in progress. , 1992, Radiology.

[9]  E R McVeigh,et al.  Multi‐echo segmented k‐space imaging: An optimized hybrid sequence for ultrafast cardiac imaging , 1999, Magnetic resonance in medicine.

[10]  William Wijns,et al.  Relation Between Myocardial Blood Flow and the Severity of Coronary-Artery Stenosis , 1995 .

[11]  G. Mckinnon,et al.  Ischemic heart disease: Assessment with gadolinium‐enhanced ultrafast MR imaging and dipyridamole stress , 1994, Journal of magnetic resonance imaging : JMRI.

[12]  R W Parkey,et al.  Contrast-enhanced magnetic resonance imaging of hypoperfused myocardium. , 1991, Investigative radiology.

[13]  K. Zierler,et al.  On the theory of the indicator-dilution method for measurement of blood flow and volume. , 1954, Journal of applied physiology.

[14]  F. Prato,et al.  Measurement of the extraction efficiency and distribution volume for Gd‐DTPA in normal and diseased canine myocardium , 1993, Magnetic resonance in medicine.

[15]  Didier Revel,et al.  Influence of bolus volume and dose of gadolinium chelate for first‐pass myocardial perfusion MR imaging studies , 1995, Journal of magnetic resonance imaging : JMRI.

[16]  N. Mullani,et al.  Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. , 1989, Circulation.

[17]  J. Debatin,et al.  Normal myocardial perfwsion assessed with multishot echo‐planar imaging , 1997 .

[18]  C. Higgins,et al.  Inversion recovery EPI of bolus transit in rat myocardium using intravascular and extravascular gadolinium‐based MR contrast media: Dose effects on peak signal enhancement , 1994, Magnetic resonance in medicine.

[19]  R. Edelman,et al.  First-pass cardiac perfusion: evaluation with ultrafast MR imaging. , 1990, Radiology.

[20]  F. Epstein,et al.  Improved coverage in dynamic contrast‐enhanced cardiac MRI using interleaved gradient‐echo EPI , 1998, Magnetic resonance in medicine.

[21]  R. Edelman,et al.  First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. , 1991, Journal of the American College of Cardiology.

[22]  M. Phelps,et al.  Influence of Age and Hemodynamics on Myocardial Blood Flow and Flow Reserve , 1993, Circulation.

[23]  G W Hamilton,et al.  Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. , 1974, The American journal of cardiology.

[24]  E. Rostrup,et al.  Measurement of the arterial concentration of Gd‐DTPA using MRI: A step toward quantitative perfusion imaging , 1996, Magnetic resonance in medicine.

[25]  K. Uğurbil,et al.  Contrast‐enhanced first pass myocardial perfusion imaging: Correlation between myocardial blood flow in dogs at rest and during hyperemia , 1993, Magnetic resonance in medicine.

[26]  P. Hekali,et al.  Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. , 1997, Circulation.

[27]  J F Debatin,et al.  Normal myocardial perfusion assessed with multishot echo-planar imaging. , 1997, Magnetic resonance in medicine.

[28]  M A Horsfield,et al.  A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. , 1999, Journal of the American College of Cardiology.

[29]  T van der Werf,et al.  Mean transit time for the assessment of myocardial perfusion by videodensitometry. , 1990, Circulation.

[30]  M. Schwaiger,et al.  Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. , 1998, Journal of the American College of Cardiology.

[31]  F. Klocke,et al.  First‐Pass Entry of Nonionic Contrast Agent Into the Myocardial Extravascular Space: Effects on Radiographic Estimates of Transit Time and Blood Volume , 1991, Circulation.

[32]  J Valk,et al.  Semiquantitation of regional myocardial blood flow in normal human subjects by first-pass magnetic resonance imaging. , 1995, American heart journal.