Parallel Computations with Algebraic Numbers - A Case Study: Jordan Normal Form of Matrices

Proposing a new method for parallel computations on algebraic numbers, we establish that computing the Jordan normal form of matrices over any commutative field F is in \(\mathcal{N}C_F\).

[1]  Allan Borodin,et al.  Parallel Computation for Well-Endowed Rings and Space-Bounded Probabilistic Machines , 1984, Inf. Control..

[2]  J. Hopcroft,et al.  Fast parallel matrix and GCD computations , 1982, FOCS 1982.

[3]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[4]  Joachim von zur Gathen,et al.  Parallel Arithmetic Computations: A Survey , 1986, MFCS.

[5]  Mark Giesbrecht,et al.  Nearly Optimal Algorithms for Canonical Matrix Forms , 1995, SIAM J. Comput..

[6]  Erich Kaltofen Sparse Hensel Lifting , 1985, European Conference on Computer Algebra.

[7]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[8]  Erich Kaltofen,et al.  Parallel algorithms for matrix normal forms , 1990 .

[9]  D. Evelyne Thèse de doctorat d'Etat , 1988 .

[10]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[11]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[12]  Patrick Ozello,et al.  Calcul exact des formes de Jordan et de Frobenius d'une matrice. (Exact computation of the Jordan and Frobenius forms of a matrix) , 1987 .

[13]  T. Gomez-Diaz Quelques applications de l'évaluation dynamique , 1994 .

[14]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[15]  B. D. Saunders,et al.  Fast parallel computation of hermite and smith forms of polynomial matrices , 1987 .

[16]  Dominique Duval,et al.  Algebraic Extensions and Algebraic Closure in Scratchpad II , 1988, ISSAC.

[17]  C. C. Macduffee,et al.  The Theory of Matrices , 1933 .