The Outer Halo of the Milky Way as Probed by RR Lyr Variables from the Palomar Transient Facility

RR Lyrae stars are ideal massless tracers that can be used to study the total mass and dark matter content of the outer halo of the Milky Way (MW). This is because they are easy to find in the light-curve databases of large stellar surveys and their distances can be determined with only knowledge of the light curve. We present here a sample of 112 RR Lyr stars beyond 50 kpc in the outer halo of the MW, excluding the Sgr streams, for which we have obtained moderate-resolution spectra with Deimos on the Keck II Telescope. Four of these have distances exceeding 100 kpc. These were selected from a much larger set of 447 candidate RR Lyr stars that were data-mined using machine-learning techniques applied to the light curves of variable stars in the Palomar Transient Facility database. The observed radial velocities taken at the phase of the variable corresponding to the time of observation were converted to systemic radial velocities in the Galactic standard of rest. From our sample of 112 RR Lyr stars we determine the radial velocity dispersion in the outer halo of the MW to be ∼90 km s−1 at 50 kpc, falling to about 65 km s−1 near 100 kpc once a small number of major outliers are removed. With reasonable estimates of the completeness of our sample of 447 candidates and assuming a spherical halo, we find that the stellar density in the outer halo declines as .

[1]  V. Belokurov,et al.  The first all-sky view of the Milky Way stellar halo with Gaia+2MASS RR Lyrae , 2017, 1707.03833.

[2]  H. Rix,et al.  The >100 kpc Distant Spur of the Sagittarius Stream and the Outer Virgo Overdensity, as Seen in PS1 RR Lyrae Stars , 2017, 1706.10187.

[3]  John L. Tonry,et al.  Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample , 2016, 1611.08596.

[4]  Coryn A. L. Bailer-Jones,et al.  A Probabilistic Approach to Fitting Period–luminosity Relations and Validating Gaia Parallaxes , 2016, 1611.07035.

[5]  G. Preston,et al.  Spectroscopic Comparison of Metal-rich RRab Stars of the Galactic Field with their Metal-poor Counterparts , 2016, 1611.02368.

[6]  A. Loeb,et al.  Predicted Extension of the Sagittarius Stream to the Milky Way Virial Radius , 2016, 1611.00089.

[7]  S. Majewski,et al.  THE STELLAR DENSITY PROFILE OF THE DISTANT GALACTIC HALO , 2016, 1610.02034.

[8]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[9]  J. Bovy,et al.  THE SHAPE OF THE INNER MILKY WAY HALO FROM OBSERVATIONS OF THE PAL 5 AND GD–1 STELLAR STREAMS , 2016, 1609.01298.

[10]  K. Ulaczyk,et al.  The OGLE Collection of Variable Stars. Over 45 000 RR Lyrae Stars in the Magellanic System , 2016, 1606.02727.

[11]  J. Binney,et al.  Characterizing stellar halo populations – I. An extended distribution function for halo K giants , 2016, 1603.09332.

[12]  Jeffrey L. Carlin,et al.  Stellar Streams and Clouds in the Galactic Halo , 2016, 1603.08936.

[13]  Ž. Ivezić,et al.  FINDING, CHARACTERIZING, AND CLASSIFYING VARIABLE SOURCES IN MULTI-EPOCH SKY SURVEYS: QSOs AND RR LYRAE IN PS1 3π DATA , 2015, 1511.05527.

[14]  Sergey E. Koposov,et al.  AN EXTENDED VIEW OF THE PISCES OVERDENSITY FROM THE SCUSS SURVEY , 2015, 1508.01272.

[15]  H. Rix,et al.  THE RADIAL PROFILE AND FLATTENING OF THE MILKY WAY’S STELLAR HALO TO 80 kpc FROM THE SEGUE K-GIANT SURVEY , 2015, 1506.06144.

[16]  A. Pietrinferni,et al.  ON A NEW THEORETICAL FRAMEWORK FOR RR LYRAE STARS. I. THE METALLICITY DEPENDENCE , 2015, 1505.02531.

[17]  A. J. Drake,et al.  Discovery of ∼9000 new RR Lyrae in the southern Catalina surveys , 2015 .

[18]  Lennart Lindegren,et al.  The Tycho-Gaia astrometric solution. How to get 2.5 million parallaxes with less than one year of Gaia data , 2014, 1412.8770.

[19]  Carnegie Observatories,et al.  ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. I. OPTICAL AND NEAR-INFRARED PERIOD–LUMINOSITY AND PERIOD–WESENHEIT RELATIONS , 2014, 1411.6826.

[20]  Joss Bland-Hawthorn,et al.  ON THE SHOULDERS OF GIANTS: PROPERTIES OF THE STELLAR HALO AND THE MILKY WAY MASS DISTRIBUTION , 2014, 1408.1787.

[21]  P. Tenenbaum,et al.  AUTOMATIC CLASSIFICATION OF KEPLER PLANETARY TRANSIT CANDIDATES , 2014, 1408.1496.

[22]  E. Ofek,et al.  STACKING THE INVISIBLES: A GUIDED SEARCH FOR LOW-LUMINOSITY MILKY WAY SATELLITES , 2014, 1407.1835.

[23]  J. Bochanski,et al.  THE MOST DISTANT STARS IN THE MILKY WAY , 2014, 1407.2610.

[24]  Ž. Ivezić,et al.  The meaning of WISE colours – I. The Galaxy and its satellites , 2014, 1405.7966.

[25]  T. Anguita,et al.  Photometric classification of quasars from RCS-2 using Random Forest , 2014, 1405.5298.

[26]  Sergey E. Koposov,et al.  THE CATALINA SURVEYS PERIODIC VARIABLE STAR CATALOG , 2014, 1405.4290.

[27]  H. Rix,et al.  A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1 , 2014, 1405.2922.

[28]  Warren R. Brown,et al.  MMT HYPERVELOCITY STAR SURVEY. III. THE COMPLETE SURVEY , 2014 .

[29]  Pavlos Protopapas,et al.  SUPERVISED DETECTION OF ANOMALOUS LIGHT CURVES IN MASSIVE ASTRONOMICAL CATALOGS , 2014, ArXiv.

[30]  Sergey E. Koposov,et al.  TOUCHING THE VOID: A STRIKING DROP IN STELLAR HALO DENSITY BEYOND 50 kpc , 2014, 1403.7205.

[31]  Nathaniel R. Butler,et al.  Mid-infrared period–luminosity relations of RR Lyrae stars derived from the AllWISE Data Release , 2014, 1402.4449.

[32]  Wendy L. Freedman,et al.  A PRELIMINARY CALIBRATION OF THE RR LYRAE PERIOD–LUMINOSITY RELATION AT MID-INFRARED WAVELENGTHS: WISE DATA , 2013, 1308.3160.

[33]  Carl J. Grillmair,et al.  TRACING THE ORPHAN STREAM TO 55 kpc WITH RR LYRAE STARS , 2013, 1308.0857.

[34]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[35]  J. S. Stuart,et al.  EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc , 2013, 1305.2160.

[36]  Sergey E. Koposov,et al.  Precession of the Sagittarius stream , 2013, Monthly Notices of the Royal Astronomical Society.

[37]  H. Rix,et al.  THE SEGUE K GIANT SURVEY. II. A CATALOG OF DISTANCE DETERMINATIONS FOR THE SEGUE K GIANTS IN THE GALACTIC HALO , 2012, 1211.0549.

[38]  E. O. Ofek,et al.  TWO DISTANT HALO VELOCITY GROUPS DISCOVERED BY THE PALOMAR TRANSIENT FACTORY , 2012, 1206.0269.

[39]  V. Belokurov,et al.  The cold veil of the Milky Way stellar halo. , 2012, 1205.6203.

[40]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[41]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[42]  Nicole Nesvacil,et al.  DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES , 2011, 1109.5631.

[43]  E. Ofek,et al.  PTF1 J071912.13+485834.0: AN OUTBURSTING AM CVn SYSTEM DISCOVERED BY A SYNOPTIC SURVEY , 2011, 1107.1209.

[44]  V. Belokurov,et al.  The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth , 2011, 1104.3220.

[45]  E. O. Ofek,et al.  A VERY LARGE ARRAY SEARCH FOR 5 GHz RADIO TRANSIENTS AND VARIABLES AT LOW GALACTIC LATITUDES , 2011, 1103.3010.

[46]  J. Richards,et al.  ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.

[47]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[48]  J. Simon,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4937.

[49]  Ž. Ivezić,et al.  THE SHAPE AND PROFILE OF THE MILKY WAY HALO AS SEEN BY THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY , 2010, 1011.4487.

[50]  Sergey E. Koposov,et al.  QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO , 2010, 1011.1925.

[51]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[52]  C. Harrison,et al.  MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY , 2010, 1007.0013.

[53]  Wenjin Huang,et al.  THE CHEMICAL EVOLUTION OF THE URSA MINOR DWARF SPHEROIDAL GALAXY , 2010, 1006.3538.

[54]  Linhua Jiang,et al.  LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82 , 2009, 0910.4611.

[55]  Warren R. Brown,et al.  VELOCITY DISPERSION PROFILE OF THE MILKY WAY HALO , 2009, 0910.2242.

[56]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[57]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[58]  Judith G. Cohen,et al.  THE CHEMICAL EVOLUTION OF THE DRACO DWARF SPHEROIDAL GALAXY , 2009, 0906.1006.

[59]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[60]  F.-J. Zickgraf,et al.  The stellar content of the Hamburg/ESO survey - V. The metallicity distribution function of the Galactic halo , 2008, 0809.1172.

[61]  Richard Dekany,et al.  The 12K×8K CCD mosaic camera for the Palomar Transient Factory , 2008, Astronomical Telescopes + Instrumentation.

[62]  M. Catelán,et al.  The Period-Luminosity Relation of RR Lyrae Stars in the SDSS Photometric System , 2008, 0805.3704.

[63]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[64]  B. Schmidt,et al.  Revealing Substructure in the Galactic Halo: The SEKBO RR Lyrae Survey , 2007, 0711.2337.

[65]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[66]  S. Hawley,et al.  Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey , 2007, 0706.1583.

[67]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[68]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[69]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[70]  G. L. Wycoff,et al.  THE THIRD US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC3) , 2004, 1003.2136.

[71]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[72]  A. K. Vivas,et al.  The QUEST RR Lyrae Survey: Confirmation of the Clump at 50 Kiloparsecs and Other Overdensities in the Outer Halo , 2001, astro-ph/0105135.

[73]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[74]  B. Chaboyer GLOBULAR CLUSTER DISTANCE DETERMINATIONS , 1998, astro-ph/9808202.

[75]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[76]  Peter B. Stetson,et al.  ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .

[77]  J. McGraw,et al.  RR Lyrae Variable Star Distribution in the Galactic Halo , 1996 .

[78]  N. Suntzeff,et al.  A Preliminary Discussion of the Kinematics of BHB and RR Lyrae Stars Near the North Galactic Pole , 1996, astro-ph/9601094.

[79]  J. Cohen The Baade-Wesselink method applied to RR lyrae variables in the globular clusters M5 and M92 , 1992 .

[80]  R. K. Honeycutt,et al.  CCD ENSEMBLE PHOTOMETRY ON AN INHOMOGENEOUS SET OF EXPOSURES , 1992 .

[81]  I. Skillen,et al.  Globular cluster distances from the RR Lyrae log(period) - infrared magnitude relation. , 1990 .

[82]  A. J. Longmore,et al.  RR Lyrae stars in globular clusters : better distances from infrared measurements ? , 1986 .

[83]  A. J. Wesselink,et al.  Surface Brightnesses in the U, B, V System with Applications of $M_{\upsilon}$ and Dimensions of Stars , 1969 .

[84]  J. Carlin,et al.  Tidal streams in the local group and beyond : observations and implications , 2016 .

[85]  James W. Beletic,et al.  Scientific Detectors for Astronomy , 2004 .

[86]  L. Breiman Random Forests , 2001, Machine Learning.

[87]  J. Beletic,et al.  Scientific detectors for astronomy : the beginning of a new era , 2004 .

[88]  A. Heck,et al.  Post-Hipparcos cosmic candles , 1999 .

[89]  W. Baade,et al.  Über eine Möglichkeit, die Pulsationstheorie der δ Cephei‐Veränderlichen zu prüfen , 1926 .