A wall-aligned grid generator for non-linear simulations of MHD instabilities in tokamak plasmas

Block-structured mesh generation techniques have been well addressed in the CFD community for automobile and aerospace studies, and their applicability to magnetic fusion is highly relevant, due to ...

[1]  D. Coster,et al.  Using SOLPS to confirm the importance of total flux expansion in Super-X divertors , 2017 .

[2]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[3]  B. Leblanc,et al.  High-speed imaging of edge turbulence in NSTX , 2004 .

[4]  P. Stangeby The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[5]  J. Contributors,et al.  Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET , 2015 .

[6]  G. Huysmans,et al.  MHD stability in X-point geometry: simulation of ELMs , 2007 .

[7]  J. Contributors,et al.  Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK , 2016 .

[8]  J. Garcia,et al.  Impact of divertor geometry on H-mode confinement in the JET metallic wall , 2017 .

[9]  A. Sips,et al.  Pedestal confinement and stability in JET-ILW ELMy H-modes , 2015 .

[10]  F. Parra,et al.  Gyrokinetic treatment of a grazing angle magnetic presheath , 2016, 1608.02002.

[11]  R. Goldston Downstream heat flux profile versus midplane T profile in tokamaks , 2010 .

[12]  H. Strauss Reduced MHD in nearly potential magnetic fields , 1997, Journal of Plasma Physics.

[13]  Guido Ciraolo,et al.  The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries , 2016, J. Comput. Phys..

[14]  A. Loarte,et al.  Non-linear magnetohydrodynamic simulations of edge localised mode triggering via vertical position oscillations in ITER , 2018, Nuclear Fusion.

[15]  M. Baelmans,et al.  Implementation of a consistent fluid‐neutral model in SOLPS‐ITER and benchmark with EIRENE , 2018, Contributions to Plasma Physics.

[16]  G. Dif-Pradalier,et al.  Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations , 2013 .

[17]  T. Eich,et al.  Inter-ELM power decay length for JET and ASDEX upgrade: measurement and comparison with heuristic drift-based model. , 2011, Physical review letters.

[18]  J. Contributors,et al.  ELM induced tungsten melting and its impact on tokamak operation , 2015 .

[19]  H. R. Strauss,et al.  Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .

[21]  Olivier Czarny,et al.  Bézier surfaces and finite elements for MHD simulations , 2008, J. Comput. Phys..

[22]  L Pangione,et al.  New magnetic real time shape control for MAST , 2013, 1310.8450.

[23]  J. Contributors,et al.  Recent progress in the quantitative validation of JOREK simulations of ELMs in JET , 2017 .

[24]  Ben Dudson,et al.  Hermes: global plasma edge fluid turbulence simulations , 2016, 1609.03360.

[25]  Pascal Hénon,et al.  On finding approximate supernodes for an efficient block-ILU(k , 2008, Parallel Comput..

[26]  R. Scannell,et al.  Resistive MHD simulation of edge-localized-modes for double-null discharges in the MAST device , 2013 .

[27]  Federico David Halpern,et al.  Boundary conditions for plasma fluid models at the magnetic presheath entrance , 2012 .

[28]  A. Loarte,et al.  Non-linear MHD simulation of ELM energy deposition , 2013, Nuclear Fusion.

[29]  D. P. Coster,et al.  GRILLIX: a 3D turbulence code based on the flux-coordinate independent approach , 2018 .