Limitations of Thermal Stability Analysis via In-Situ TEM/Heating Experiments

This work highlights some limitations of thermal stability analysis via in-situ transmission electron microscopy (TEM)-annealing experiments on ultrafine and nanocrystalline materials. We provide two examples, one on nanocrystalline pure copper and one on nanocrystalline HT-9 steel, where in-situ TEM-annealing experiments are compared to bulk material annealing experiments. The in-situ TEM and bulk annealing experiments demonstrated different results on pure copper but similar output in the HT-9 steel. The work entails discussion of the results based on literature theoretical concepts, and expound on the inevitability of comparing in-situ TEM annealing experimental results to bulk annealing when used for material thermal stability assessment.

[1]  Hyosim Kim,et al.  Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining , 2021, Nanomaterials.

[2]  Jie Xu,et al.  Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High‐Pressure Torsion , 2020, Advanced Engineering Materials.

[3]  G. Dehm,et al.  Initiation and stagnation of room temperature grain coarsening in cyclically strained gold films , 2019, Acta Materialia.

[4]  Yugang Wang,et al.  Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance , 2018, Nature Communications.

[5]  J. Baldwin,et al.  Outstanding radiation resistance of tungsten-based high-entropy alloys , 2018, Science Advances.

[6]  P. Liaw,et al.  Thermal Stability of High Entropy Alloys during in Situ TEM Heating. , 2018, Microscopy and Microanalysis.

[7]  M. Taheri,et al.  Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation , 2017, Scientific Reports.

[8]  I. M. Robertson,et al.  Initial texture effects on the thermal stability and grain growth behavior of nanocrystalline Ni thin films , 2016 .

[9]  Blythe G. Clark,et al.  Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs , 2016 .

[10]  W. Brown,et al.  Driving forces for texture transformation in thin Ag films , 2016 .

[11]  D. Kinderlehrer,et al.  Grain growth and the puzzle of its stagnation in thin films: The curious tale of a tail and an ear , 2013 .

[12]  E. Arzt,et al.  Kinetics and driving forces of abnormal grain growth in thin Cu films , 2012 .

[13]  R. Scattergood,et al.  Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection , 2011 .

[14]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[15]  S. Ide,et al.  Compact DEMO, SlimCS: design progress and issues , 2009 .

[16]  Irene Livshits,et al.  A Variational Approach to Modeling and Simulation of Grain Growth , 2006, SIAM J. Sci. Comput..

[17]  K. T. Ramesh,et al.  Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion , 2006 .

[18]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[19]  K. T. Ramesh,et al.  Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression , 2005 .

[20]  R. Valiev Paradoxes of Severe Plastic Deformation , 2003 .

[21]  J. W. Davis,et al.  Assessment of tungsten for use in the ITER plasma facing components 1 #AC-3013 with Sandia National Laboratories. 1 , 1998 .

[22]  C. Koch,et al.  Grain growth in nanocrystalline iron prepared by mechanical attrition , 1997 .

[23]  R. Valiev,et al.  On the enhanced grain growth in ultrafine grained metals , 1995 .

[24]  U. Erb,et al.  Effect of grain size on mechanical properties of nanocrystalline materials , 1995 .

[25]  H. Frost,et al.  Microstructural evolution in thin films , 1994 .

[26]  Carl V. Thompson,et al.  Grain Growth in Thin Films , 1990 .

[27]  David J. Srolovitz,et al.  Computer simulation of grain growth—V. Abnormal grain growth , 1985 .

[28]  H. Fujita,et al.  The effect of grain size and deformation sub-structure on mechanical properties of polycrystalline aluminum , 1973 .

[29]  K. Lücke,et al.  On the theory of impurity controlled grain boundary motion , 1971 .

[30]  W. W. Mullins,et al.  The effect of thermal grooving on grain boundary motion , 1958 .

[31]  W. Mullins Theory of Thermal Grooving , 1957 .

[32]  M. Efe,et al.  Microstructure refinement of tungsten by surface deformation for irradiation damage resistance , 2014 .

[33]  Said I. Abdel-Khalik,et al.  Recent US activities on advanced He-cooled W-alloy divertor concepts for fusion power plants , 2011 .

[34]  O. Hunderi,et al.  On the Zener drag , 1985 .

[35]  J. E. Burke,et al.  RECRYSTALLIZATION AND GRAIN GROWTH , 1952 .

[36]  University of Huddersfield Repository Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten , 2022 .