Combining and adapting software quality predictive models by genetic algorithms

The goal of quality models is to predict a quality factor starting from a set of direct measures. Selecting an appropriate quality model for a particular software is a difficult, non-trivial decision. In this paper, we propose an approach to combine and/or adapt existing models (experts) in such way that the combined/adapted model works well on the particular system. Test results indicate that the models perform significantly better than individual experts in the pool.