Robust and stable optimization for parallel machine scheduling problems

Scheduling on unrelated parallel machines is a common problem in many systems (as semi-conductors manufacturing,multiprocessor computer applications, textile industry, etc.). In this thesis, we consider two variantsof this problem under uncertain processing time. In the first case, each job can be split into continuoussub-jobs and processed independently on the machines with allowed overlappinf. In the second case whichis termed preemption, we prohibit the overlapping. From a mathematical viewpoint, the splitting problem isa relaxed version of the preemptive problem. The objective is to minimize the makespan.The deterministic linear formulations provided by the literature allow to solve these problems in polynomialtimes under the hypothesis of certainty. But, when we consider uncertain processing times, thesealgorithms suffer from some limitations. Indeed, the solutions compouted based on a nominal instance,supposed to be certain, turn usually to be suboptimal when applied to the actual realization of processingtimes.We incorporate the uncertain processing times in these problems without making any assumption ontheir distribution. Hence, we use discrete scenarios to represent the uncetain processing times and we adopta proactive approach to provide robust solutions. We use special case policies that are commongly used inthe industry to compute robust solutions. We show that the solutions based on some of those policies arepotentially good in terms of robustness according to the worst-case makespan, especially the scenario smaxsolution under which all the processing times are set to their maximal values. However, the robustness costsof these solutions are not satisfying. Thus, we propose to compute optimal robust solutions. For this purpose,we use a mathematical trick that allows us to formulate and solve, in polynomila times, the robust versionsof the considered scheduling problems. Moreover, the computational results affirm that the robustness costof the optimal solution is not usually very high.Moreover, we evaluate the stability of the robust solutions under a new scenario induced by variations.In fact, the decision-maker is only responsible for the consequences of the decisions when the processingtime realizations are within the represented uncertainty set. Thus, we define stability of a robust solution asits ability to cover a new scenario with minor deviations regarding its structure and its performance.The global motivation of this thesis is then to provide a decision support to help decision maker computerobust solutions and choose among these robust solutions those with the most stable structure and the moststable performance.

[1]  Li-Chen Fu,et al.  A memetic algorithm for minimizing total weighted tardiness on parallel batch machines with incompatible job families and dynamic job arrival , 2010, Comput. Oper. Res..

[2]  Stephen C. Hora,et al.  Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management , 1996 .

[3]  G. Dosi,et al.  Substantive and procedural uncertainty , 1991 .

[4]  Cristóvão Silva,et al.  Heuristic lot size scheduling on unrelated parallel machines with applications in the textile industry , 2006, Comput. Ind. Eng..

[5]  M Özlen,et al.  Rescheduling unrelated parallel machines with total flow time and total disruption cost criteria , 2011, J. Oper. Res. Soc..

[6]  Spyros Makridakis,et al.  Decision making and planning under low levels of predictability , 2009 .

[7]  David Gale,et al.  Review: R. Duncan Luce and Howard Raiffa, Games and decisions: Introduction and critical survey , 1958 .

[8]  Yuri N. Sotskov,et al.  Minimizing total weighted flow time under uncertainty using dominance and a stability box , 2012, Comput. Oper. Res..

[9]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[10]  Alexandre Dolgui,et al.  Stability radius of the optimal assembly line balance with fixed cycle time , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[11]  Mark S. Daskin,et al.  α-reliable p-minimax regret: a new model for strategic facility location modeling , 1997 .

[12]  Eugene L. Lawler,et al.  On Preemptive Scheduling of Unrelated Parallel Processors by Linear Programming , 1978, JACM.

[13]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[14]  Joseph Geunes,et al.  Predictive-reactive scheduling on a single resource with uncertain future jobs , 2008, Eur. J. Oper. Res..

[15]  J. A. Svestka,et al.  Rescheduling job shops under random disruptions , 1997 .

[16]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[17]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[18]  Federico Della Croce,et al.  Complexity of single machine scheduling problems under scenario-based uncertainty , 2008, Oper. Res. Lett..

[19]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[20]  Peter Cowling,et al.  Production, Manufacturing and Logistics Using real time information for effective dynamic scheduling , 2002 .

[21]  Rubén Ruiz,et al.  Flow shop rescheduling under different types of disruption , 2013 .

[22]  Ihsan Sabuncuoglu,et al.  Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research , 2009, Int. J. Comput. Integr. Manuf..

[23]  Y. Sotskov,et al.  Minimizing total weighted completion time with uncertain data: A stability approach , 2010 .

[24]  Frank Werner,et al.  The Stability Box in Interval Data for Minimizing the Sum of Weighted Completion Times , 2011, SIMULTECH.

[25]  Xiangpei Hu,et al.  Optimal production planning for assembly systems with uncertain capacities and random demand , 2016, Eur. J. Oper. Res..

[26]  Ming Zhao,et al.  A family of inequalities valid for the robust single machine scheduling polyhedron , 2010, Comput. Oper. Res..

[27]  Igor Averbakh The minmax regret permutation flow-shop problem with two jobs , 2006, Eur. J. Oper. Res..

[28]  A. Rossi,et al.  Ordonnancement en milieu incertain, mise en oeuvre d'une démarche robuste , 2003 .

[29]  George J. Klir,et al.  Uncertainty Modeling and Analysis in Engineering and the Sciences (Hardcover) , 2006 .

[30]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[31]  Maciej Drwal Min-Max Regret Scheduling To Minimize the Total Weight of Late Jobs With Interval Uncertainty , 2017, ArXiv.

[32]  Jerzy Józefczyk,et al.  Solution algorithms for unrelated machines minmax regret scheduling problem with interval processing times and the total flow time criterion , 2014, Ann. Oper. Res..

[33]  Thomas Augustin,et al.  Foundations of Probability , 2011, International Encyclopedia of Statistical Science.

[34]  André Rossi A robustness measure of the configuration of multi-purpose machines , 2010 .

[35]  Dimitris Bertsimas,et al.  Tractable stochastic analysis in high dimensions via robust optimization , 2012, Mathematical Programming.

[36]  Robert H. Storer,et al.  Robustness Measures and Robust Scheduling for Job Shops , 1994 .

[37]  Dan Wang,et al.  A novel single-period inventory problem with uncertain random demand and its application , 2015, Appl. Math. Comput..

[38]  Alexandre Dolgui,et al.  Stability analysis of an optimal balance for an assembly line with fixed cycle time , 2006, Eur. J. Oper. Res..

[39]  Pablo A. Parrilo,et al.  Optimality of Affine Policies in Multistage Robust Optimization , 2009, Math. Oper. Res..

[40]  Mark Colyvan,et al.  Is Probability the Only Coherent Approach to Uncertainty? , 2008, Risk analysis : an official publication of the Society for Risk Analysis.

[41]  Radivoj Petrovic,et al.  Supply chain modelling using fuzzy sets , 1999 .

[42]  Anil K. Jain,et al.  PRODUCTION SCHEDULING/RESCHEDULING IN FLEXIBLE MANUFACTURING , 1997 .

[43]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[44]  Adam Kurpisz,et al.  Approximating a two-machine flow shop scheduling under discrete scenario uncertainty , 2012, Eur. J. Oper. Res..

[45]  Eduardo Conde,et al.  A 2-approximation for minmax regret problems via a mid-point scenario optimal solution , 2010, Oper. Res. Lett..

[46]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Alexandre Dolgui,et al.  Scenario based robust line balancing: Computational complexity , 2012, Discret. Appl. Math..

[48]  Jacek Blazewicz,et al.  Scheduling in Computer and Manufacturing Systems , 1990 .

[49]  Jonathan P. How,et al.  Decision Making Under Uncertainty: Theory and Application , 2015 .

[50]  Christodoulos A. Floudas,et al.  A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: III. Improving the Quality of Robust Solutions , 2014, Industrial & engineering chemistry research.

[51]  J. Christopher Beck,et al.  Slack-based Techniques for Robust Schedules , 2014 .

[52]  R. Wets,et al.  Stochastic programming , 1989 .

[53]  T.C.E. Cheng,et al.  A state-of-the-art review of parallel-machine scheduling research , 1990 .

[54]  Maciej Drwal,et al.  Complexity of interval minmax regret scheduling on parallel identical machines with total completion time criterion , 2014, Oper. Res. Lett..

[55]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[56]  Eric Sanlaville,et al.  Sensitivity analysis of tree scheduling on two machines with communication delays , 2004, Parallel Comput..

[57]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[58]  Jerzy Józefczyk,et al.  Evolutionary Algorithm for Minmax Regret Flow-Shop Problem , 2015 .

[59]  Warren E. Walker,et al.  Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .

[60]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[61]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[62]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[63]  Robert H. Storer,et al.  A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness , 1999, Oper. Res..

[64]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[65]  M. Sebrechts Ignorance and Uncertainty: Emerging Paradigms , 1989 .

[66]  F. Ramsey The Foundations of Mathematics and Other Logical Essays , 2001 .

[67]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[68]  T. C. Edwin Cheng,et al.  Rescheduling on identical parallel machines with machine disruptions to minimize total completion time , 2016, Eur. J. Oper. Res..

[69]  Jaejin Jang,et al.  Production rescheduling for machine breakdown at a job shop , 2012 .

[70]  Claude Lamboray,et al.  L’α-robustesse lexicographique : une relaxation de la β-robustesse , 2007 .

[71]  Nikolaos Trichakis,et al.  Pareto Efficiency in Robust Optimization , 2014, Manag. Sci..

[72]  Hercules Vladimirou,et al.  Stochastic linear programs with restricted recourse , 1997 .

[73]  Willy Herroelen,et al.  The construction of stable project baseline schedules , 2004, Eur. J. Oper. Res..

[74]  G. Shackle,et al.  Uncertainty and expectations in economics : essays in honour of G.L.S. Shackle , 1972 .

[75]  Shanlin Yang,et al.  Scheduling jobs on a single serial-batching machine with dynamic job arrivals and multiple job types , 2016, Annals of Mathematics and Artificial Intelligence.

[76]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[77]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[78]  Jun Lin,et al.  Hedge against total flow time uncertainty of the uniform parallel machine scheduling problem with interval data , 2014 .

[79]  Lars Mönch,et al.  A variable neighborhood search approach for planning and scheduling of jobs on unrelated parallel machines , 2012, J. Intell. Manuf..

[80]  Xiaoqing Xu,et al.  Robust makespan minimisation in identical parallel machine scheduling problem with interval data , 2013 .

[81]  Panagiotis Kouvelis,et al.  Robust scheduling to hedge against processing time uncertainty in single-stage production , 1995 .

[82]  Van-Anh Truong,et al.  Multi-Priority Online Scheduling with Cancellations , 2017, Oper. Res..

[83]  Jordi Pereira,et al.  The robust (minmax regret) single machine scheduling with interval processing times and total weighted completion time objective , 2016, Comput. Oper. Res..

[84]  S. Vajda,et al.  GAMES AND DECISIONS; INTRODUCTION AND CRITICAL SURVEY. , 1958 .

[85]  Sheila Dow Uncertainty: A Diagrammatic Treatment , 2016 .

[86]  Daniel Kuhn,et al.  Generalized decision rule approximations for stochastic programming via liftings , 2014, Mathematical Programming.

[87]  Sanja Petrovic,et al.  Fuzzy job shop scheduling with lot-sizing , 2008, Ann. Oper. Res..

[88]  Wei He,et al.  Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies , 2013 .

[89]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[90]  Roel Leus,et al.  Resource‐Constrained Project Scheduling for Timely Project Completion with Stochastic Activity Durations , 2007 .

[91]  Jiawei Zhang,et al.  Parallel machine scheduling with splitting jobs , 2000, Discret. Appl. Math..

[92]  Adam Kasperski,et al.  A 2-approximation algorithm for interval data minmax regret sequencing problems with the total flow time criterion , 2008, Oper. Res. Lett..

[93]  M. Azizoglu,et al.  Generating all efficient solutions of a rescheduling problem on unrelated parallel machines , 2009 .

[94]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[95]  F. O. Hoffman,et al.  An introductory guide to uncertainty analysis in environmental and health risk assessment , 1992 .

[96]  Eduardo Conde,et al.  A MIP formulation for the minmax regret total completion time in scheduling with unrelated parallel machines , 2014, Optim. Lett..

[97]  J. Schreiber Foundations Of Statistics , 2016 .

[98]  R. Leus,et al.  The trade-off between stability and makespan in resource-constrained project scheduling , 2004 .

[99]  Hans-Jürgen Zimmermann,et al.  Fuzzy set theory , 1992 .

[100]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[101]  Adam Kasperski,et al.  Sequencing Problems with Uncertain Parameters and the OWA Criterion , 2013, OR.

[102]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[103]  Mohamed Ali Aloulou,et al.  Minimizing the number of late jobs on a single machine under due date uncertainty , 2011, J. Sched..

[104]  Sanjay Mehta,et al.  Predictable scheduling of a single machine subject to breakdowns , 1999, Int. J. Comput. Integr. Manuf..

[105]  Adam Kasperski Minimizing maximal regret in the single machine sequencing problem with maximum lateness criterion , 2005, Oper. Res. Lett..

[106]  K. Davidson Why Acquisitions May Not Be the Best Route to Innovation , 1991 .

[107]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[108]  Dimitris Bertsimas,et al.  Constructing Uncertainty Sets for Robust Linear Optimization , 2009, Oper. Res..

[109]  Weldon A. Lodwick,et al.  Introduction to Fuzzy and Possibilistic Optimization , 2010, Fuzzy Optimization.

[110]  Jian Yang,et al.  On the Robust Single Machine Scheduling Problem , 2002, J. Comb. Optim..

[111]  Jaehwan Yang No Tardiness Rescheduling with Order Disruptions , 2013 .

[112]  Ghaith Rabadi,et al.  Exact and heuristic algorithms for the aerial refueling parallel machine scheduling problem with due date-to-deadline window and ready times , 2012, Comput. Ind. Eng..

[113]  Tarek Y. ElMekkawy,et al.  Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm , 2011 .

[114]  J. Rosenhead,et al.  Robustness and Optimality as Criteria for Strategic Decisions , 1972 .

[115]  Hau L. Lee,et al.  A ROBUSTNESS APPROACH TO FACILITIES DESIGN , 1987 .

[116]  T.-C. Lai,et al.  Sequencing with uncertain numerical data for makespan minimisation , 1999, J. Oper. Res. Soc..

[117]  Didier Dubois,et al.  Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge , 2003, Eur. J. Oper. Res..

[118]  Pei-Chann Chang,et al.  One-machine rescheduling heuristics with efficiency and stability as criteria , 1993, Comput. Oper. Res..

[119]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[120]  O. Williamson Opportunism and its critics , 1993 .

[121]  Shabbir Ahmed,et al.  Robust Process Planning under Uncertainty , 1998 .

[122]  David Dequech,et al.  Uncertainty: A Typology and Refinements of Existing Concepts , 2011 .

[123]  Kenneth N. McKay,et al.  Unifying the theory and practice of production scheduling , 1999 .

[124]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[125]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[126]  Vincent Marchau,et al.  Addressing deep uncertainty using adaptive policies: introduction to section 2 , 2010 .

[127]  Ola Svensson,et al.  Single machine scheduling with scenarios , 2013, Theor. Comput. Sci..

[128]  S.M.T. Fatemi Ghomi,et al.  Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates , 2014 .

[129]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[130]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[131]  Reha Uzsoy,et al.  Executing production schedules in the face of uncertainties: A review and some future directions , 2005, Eur. J. Oper. Res..

[132]  J. Curry,et al.  Rescheduling parallel machines with stepwise increasing tardiness and machine assignment stability objectives , 2005 .

[133]  Christodoulos A. Floudas,et al.  A new robust optimization approach for scheduling under uncertainty: : I. Bounded uncertainty , 2004, Comput. Chem. Eng..

[134]  R. L. Daniels,et al.  β-Robust scheduling for single-machine systems with uncertain processing times , 1997 .

[135]  Marie-Laure Espinouse,et al.  Maximizing the configuration robustness for parallel multi-purpose machines under setup cost constraints , 2012, J. Sched..

[136]  Y. N. Stoskov Stability of an optimal schedule , 1991 .

[137]  Rui Xu,et al.  Minimising makespan on a single batch processing machine with dynamic job arrivals and non-identical job sizes , 2014 .

[138]  Teofilo F. Gonzalez,et al.  A Note on Open Shop Preemptive Schedules , 1979, IEEE Transactions on Computers.

[139]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[140]  Warren E. Walker,et al.  Adaptive Airport Strategic Planning , 2010, European Journal of Transport and Infrastructure Research.

[141]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[142]  Willy Herroelen,et al.  The complexity of machine scheduling for stability with a single disrupted job , 2005, Oper. Res. Lett..

[143]  Reha Uzsoy,et al.  Predictable scheduling of a job shop subject to breakdowns , 1998, IEEE Trans. Robotics Autom..

[144]  Sanja Petrovic,et al.  SURVEY OF DYNAMIC SCHEDULING IN MANUFACTURING SYSTEMS , 2006 .

[145]  Ghaith Rabadi,et al.  Minimising the total weighted tardiness and instability for the parallel machine re-scheduling problem with deadlines and ready times , 2015 .

[146]  Erick Delage,et al.  Decision Making Under Uncertainty When Preference Information Is Incomplete , 2015, Manag. Sci..

[147]  Jon C. Helton,et al.  Treatment of Uncertainty in Performance Assessments for Complex Systems , 1994 .

[148]  Eric Sanlaville,et al.  Parallel Machine Scheduling with Uncertain Communication Delays , 2003, RAIRO Oper. Res..

[149]  Donya Rahmani,et al.  Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times , 2014 .

[150]  Willy Herroelen,et al.  Stability and resource allocation in project planning , 2004 .

[151]  Dorota Warżołek,et al.  The classification of scheduling problems under production uncertainty , 2014 .

[152]  Ihsan Sabuncuoglu,et al.  Optimization of schedule robustness and stability under random machine breakdowns and processing time variability , 2009 .

[153]  Fabrice Talla Nobibon,et al.  Robust optimization for resource-constrained project scheduling with uncertain activity durations , 2011, 2011 IEEE International Conference on Industrial Engineering and Engineering Management.

[154]  Jan Karel Lenstra,et al.  Complexity of Scheduling under Precedence Constraints , 1978, Oper. Res..

[155]  J. Kacprzyk,et al.  Optimization Models Using Fuzzy Sets and Possibility Theory , 1987 .

[156]  Reha Uzsoy,et al.  A genetic algorithm for minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals and incompatible job families , 2007, Comput. Oper. Res..

[157]  Adam Kasperski,et al.  Single machine scheduling problems with uncertain parameters and the OWA criterion , 2014, Journal of Scheduling.

[158]  Shabbir Ahmed,et al.  Supply chain design under uncertainty using sample average approximation and dual decomposition , 2009, Eur. J. Oper. Res..

[159]  J. Rosenhead,et al.  Robustness in Sequential Investment Decisions , 1968 .

[160]  David Dequech,et al.  Fundamental Uncertainty and Ambiguity , 2000 .

[161]  Ihsan Sabuncuoglu,et al.  Robustness and stability measures for scheduling: single-machine environment , 2008 .

[162]  T. C. Edwin Cheng,et al.  Production planning and pricing policy in a make-to-stock system with uncertain demand subject to machine breakdowns , 2014, Eur. J. Oper. Res..

[163]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[164]  Jean-Charles Billaut,et al.  Flexibility and Robustness in Scheduling , 2008 .

[165]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[166]  Daniel Vanderpooten,et al.  Lexicographic α-robustness: an application to the 1-median problem , 2010, RAIRO Oper. Res..

[167]  Mostafa Zandieh,et al.  A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms , 2016, Comput. Oper. Res..

[168]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[169]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[170]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[171]  Alexandre Dolgui,et al.  A bibliographic review of production line design and balancing under uncertainty , 2015 .

[172]  R. Tavakkoli-Moghaddam,et al.  Two meta-heuristics for solving a new two-machine flowshop scheduling problem with the learning effect and dynamic arrivals , 2013 .

[173]  Meral Azizoglu,et al.  Parallel-machine rescheduling with machine disruptions , 2005 .

[174]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[175]  Brian Tomlin,et al.  The Newsvendor Under Demand Ambiguity: Combining Data with Moment and Tail Information , 2015, Oper. Res..

[176]  Chris N. Potts,et al.  Integrating Scheduling with Batching and Lot-Sizing: A Review of Algorithms and Complexity , 1992 .

[177]  Willy Herroelen,et al.  Robust and reactive project scheduling: a review and classification of procedures , 2004 .

[178]  Jeffrey W. Herrmann,et al.  Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods , 2003, J. Sched..

[179]  J. Rittscher,et al.  A multi-objective supplier selection model under stochastic demand conditions , 2007 .

[180]  G. Ranga Janardhana,et al.  Rescheduling Activities in Face of Disruption in House Hold Goods Manufacturing Supply Chain , 2016 .

[181]  George L. Vairaktarakis,et al.  Robust scheduling of a two-machine flow shop with uncertain processing times , 2000 .

[182]  Frank Werner,et al.  Stability of an optimal schedule in a job shop , 1997 .

[183]  Jian Xiong,et al.  Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns , 2013 .

[184]  Igor Averbakh,et al.  Complexity of minimizing the total flow time with interval data and minmax regret criterion , 2006, Discret. Appl. Math..

[185]  Teofilo F. Gonzalez,et al.  Open Shop Scheduling to Minimize Finish Time , 1976, JACM.

[186]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[187]  Hugh Courtney,et al.  Decision‐driven scenarios for assessing four levels of uncertainty , 2003 .

[188]  Michael Smithson,et al.  Ignorance and Disasters , 1990, International Journal of Mass Emergencies & Disasters.

[189]  D. Richards,et al.  Understanding uncertainty , 2012, Evidence-Based Dentistry.

[190]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[191]  T. Trucano,et al.  Verification, Validation, and Predictive Capability in Computational Engineering and Physics , 2004 .

[192]  Ghaith Rabadi,et al.  Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem , 2013 .

[193]  C. Freeman Economics of Industrial Innovation , 1975 .