A color YUV image edge detection method based on histogram equalization transformation

Because Color is a powerful descriptor of the color image, so color edge detection has been a staple of color image segmentation. The paper analyzed the methods of RGB image edge detection, the color image edge detection method is improved according to the two principles that are conversion transformation between RGB color space and YUV color space and histogram equalization transformation. The four steps of the detailed YUV image edge detection method are as follows: decomposing the YUV image, processing the Y component, composing the Y,U and V component and YUV-to-RGB conversion transformation. The experiment results show that the improved method compared with the RGB image edge detection methods can not only raise the effect of color image, but also simplify the method of color image edge detection.

[1]  R. Dony,et al.  Edge detection on color images using RGB vector angles , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).

[2]  C.J.H. Mann,et al.  Color Image Processing – Methods and Applications , 2008 .

[3]  K. Plataniotis,et al.  Color Image Processing : Methods and Applications , 2006 .

[4]  C. A. Murthy,et al.  IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Standardization of Edge Magnitude in Color Images , 2022 .

[5]  Jianping Fan,et al.  An improved automatic isotropic color edge detection technique , 2001, Pattern Recognit. Lett..

[6]  Panos E. Trahanias,et al.  Color edge detection using vector order statistics , 1993, IEEE Trans. Image Process..

[7]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Guner S. Robinson Color Edge Detection , 1977 .

[9]  Rastislav Lukac,et al.  Color image processing , 2007, Comput. Vis. Image Underst..

[10]  Jacob Scharcanski,et al.  Edge detection of color images using directional operators , 1997, IEEE Trans. Circuits Syst. Video Technol..