The Targeted Shadowing Hybrid Monte Carlo (TSHMC) Method

Following Izaguirre & Hampton [14], Horowitz [13], and Attard [1] as well as work of one of the authors on dissipative particle dynamics [4] and modified equations [23], we suggest a modified Metropolis criterion and a more flexible momentum update to improve the acceptance rate and the flexibility of the thermal coupling in standard hybrid Monte Carlo simulations.

[1]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[2]  P. C. Moan On the KAM and Nekhoroshev theorems for symplectic integrators and implications for error growth , 2004 .

[3]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[4]  Jesús A. Izaguirre,et al.  Targeted Mollified Impulse: A Multiscale Stochastic Integrator for Long Molecular Dynamics Simulations , 2003, Multiscale Model. Simul..

[5]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[6]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[7]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[8]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[9]  P. Attard Stochastic molecular dynamics: A combined Monte Carlo and molecular dynamics technique for isothermal simulations , 2002 .

[10]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[11]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[12]  Karttunen,et al.  Towards better integrators for dissipative particle dynamics simulations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  A. Horowitz A generalized guided Monte Carlo algorithm , 1991 .

[14]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[15]  Colin J. Cotter,et al.  An extended dissipative particle dynamics model , 2003 .

[16]  Heermann,et al.  Hybrid Monte Carlo method for condensed-matter systems. , 1992, Physical review. B, Condensed matter.

[17]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[18]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[19]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[20]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[21]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[22]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[23]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[24]  Robert D. Skeel,et al.  Practical Construction of Modified Hamiltonians , 2001, SIAM J. Sci. Comput..

[25]  Scott S. Hampton,et al.  Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .

[26]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[27]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[28]  J. Pöschel,et al.  On the Inclusion of Analytic Symplectic Maps in Analytic Hamiltonian Flows and Its Applications , 1994 .