Annotation, Modelling and Analysis of Fine-Grained Emotions on a Stance and Sentiment Detection Corpus

There is a rich variety of data sets for sen- timent analysis (viz., polarity and subjec- tivity classification). For the more chal- lenging task of detecting discrete emotions following the definitions of Ekman and Plutchik, however, there are much fewer data sets, and notably no resources for the social media domain. This paper con- tributes to closing this gap by extending the SemEval 2016 stance and sentiment dataset with emotion annotation. We (a) analyse annotation reliability and annotation merg- ing; (b) investigate the relation between emotion annotation and the other annota- tion layers (stance, sentiment); (c) report modelling results as a baseline for future work.

[1]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[2]  T. Dalgleish Basic Emotions , 2004 .

[3]  Stuart Adam Battersby,et al.  Experimenting with Distant Supervision for Emotion Classification , 2012, EACL.

[4]  Peng Zhou,et al.  Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling , 2016, COLING.

[5]  Himabindu Lakkaraju,et al.  Exploiting Coherence for the Simultaneous Discovery of Latent Facets and associated Sentiments , 2011, SDM.

[6]  A. Feinstein,et al.  High agreement but low kappa: II. Resolving the paradoxes. , 1990, Journal of clinical epidemiology.

[7]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[8]  Cícero Nogueira dos Santos,et al.  Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts , 2014, COLING.

[9]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[10]  Stan Szpakowicz,et al.  Identifying Expressions of Emotion in Text , 2007, TSD.

[11]  Nancy Ide,et al.  Distant Supervision for Emotion Classification with Discrete Binary Values , 2013, CICLing.

[12]  Saif Mohammad,et al.  SemEval-2016 Task 6: Detecting Stance in Tweets , 2016, *SEMEVAL.

[13]  Eliyahu Kiperwasser,et al.  Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations , 2016, TACL.

[14]  Veselin Stoyanov,et al.  Evaluation Measures for the SemEval-2016 Task 4 “Sentiment Analysis in Twitter” (Draft: Version 1.13) , 2016 .

[15]  Cecilia Ovesdotter Alm,et al.  Emotions from Text: Machine Learning for Text-based Emotion Prediction , 2005, HLT.

[16]  Barbara Plank,et al.  Multilingual Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary Loss , 2016, ACL.

[17]  Iryna Gurevych,et al.  Sentence and Expression Level Annotation of Opinions in User-Generated Discourse , 2010, ACL.

[18]  Joel D. Martin,et al.  Sentiment, emotion, purpose, and style in electoral tweets , 2015, Inf. Process. Manag..

[19]  Amélie Marian,et al.  Beyond the Stars: Improving Rating Predictions using Review Text Content , 2009, WebDB.

[20]  Mike Thelwall,et al.  Sentiment strength detection for the social web , 2012, J. Assoc. Inf. Sci. Technol..

[21]  Xiao Zhang,et al.  pkudblab at SemEval-2016 Task 6 : A Specific Convolutional Neural Network System for Effective Stance Detection , 2016, *SEMEVAL.

[22]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[23]  Christopher M. Danforth,et al.  Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter , 2011, PloS one.

[24]  Christopher D. Manning,et al.  Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.

[25]  P. Wilson,et al.  The Nature of Emotions , 2012 .

[26]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[27]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[28]  Kalina Bontcheva,et al.  USFD at SemEval-2016 Task 6: Any-Target Stance Detection on Twitter with Autoencoders , 2016, *SEMEVAL.

[29]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[30]  Iryna Gurevych,et al.  Supersense Embeddings: A Unified Model for Supersense Interpretation, Prediction, and Utilization , 2016, ACL.

[31]  Miriam Eckert,et al.  The ICWSM 2010 JDPA Sentiment Corpus for the Automotive Domain , 2010 .

[32]  Roman Klinger Does Optical Character Recognition and Caption Generation Improve Emotion Detection in Microblog Posts? , 2017, NLDB.

[33]  Harith Alani,et al.  Evaluation Datasets for Twitter Sentiment Analysis: A survey and a new dataset, the STS-Gold , 2013, ESSEM@AI*IA.

[34]  Karin Becker,et al.  INF-UFRGS-OPINION-MINING at SemEval-2016 Task 6: Automatic Generation of a Training Corpus for Unsupervised Identification of Stance in Tweets , 2016, *SEMEVAL.

[35]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[36]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[37]  Maarten de Rijke,et al.  Identifying entity aspects in microblog posts , 2012, SIGIR '12.

[38]  Jason Baldridge,et al.  Twitter Polarity Classification with Label Propagation over Lexical Links and the Follower Graph , 2011, ULNLP@EMNLP.

[39]  Xiaocheng Feng,et al.  Effective LSTMs for Target-Dependent Sentiment Classification , 2015, COLING.

[40]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[41]  Erkki Sutinen,et al.  Are They Different? Affect, Feeling, Emotion, Sentiment, and Opinion Detection in Text , 2014, IEEE Transactions on Affective Computing.

[42]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[43]  Bernardete Ribeiro,et al.  Concept Drift Awareness in Twitter Streams , 2014, 2014 13th International Conference on Machine Learning and Applications.

[44]  Saif Mohammad,et al.  Stance and Sentiment in Tweets , 2016, ACM Trans. Internet Techn..

[45]  David A. Shamma,et al.  Tweet the debates: understanding community annotation of uncollected sources , 2009, WSM@MM.

[46]  Amit P. Sheth,et al.  Harnessing Twitter "Big Data" for Automatic Emotion Identification , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[47]  Saif Mohammad,et al.  WASSA-2017 Shared Task on Emotion Intensity , 2017, WASSA@EMNLP.

[48]  Dejing Dou,et al.  Weakly Supervised Tweet Stance Classification by Relational Bootstrapping , 2016, EMNLP.