배경: 최근 조직판막의 구조적 손상에 있어서 동물면역 반응이 중요한 역할을 할 가능성이 제기되면서 동물의 대표적 이종항원 물질인 알파-갈 항원결정인자에 대한 환자의 면역반응에 관한 관심이 높아지고 있다. 또한 알파-갈은 세포 표면에 존재하며 이는 녹색콩 알파-갈락토시다아제 라는 효소를 이용하여 제거할 수 있다고 알려져 있고 조직 표면의 알파-갈 항원결정인자는 Griffonia Simplicifolia의 동종렉틴 중 B4타입에 선택적으로 결합하여 이를 이용해서 염색할 수 있다고 알려져 있다. 이에 본 연구팀은 조직판막을 만드는데 많이 사용되는 돼지의 대동맥 판막 및 심낭 조직을 가지고 녹색콩알파-갈락토시다아제를 이용하여 이들 조직의 알파-갈 항원결정인자를 제거할 수 있는지 알아 보고자하였다. 대상 및 방법: 신선한 돼지의 대동맥 판막 및 심낭 조직을 0.5 unit/mL, 1.0 unit/mL, 2.0 unit/mL 농도의 녹색콩 알파-갈락토시다아제로 pH 6.5, $4^{\circ}C$ 에서 24시간 처리한 뒤 이를 Griffonia Simplicifolia 동종렉틴 B4 타입을 이용한 면역조직형광염색으로 염색하여, 각각의 농도에서 효소 반응 후 해당 조직의 알파-갈 항원결정인자가 얼마나 제거되는지를 형광염색의 정도로 판단하였다. 결과: 돼지의 대동맥 판막 조직의 경우 1.0 unit/mL농도의 녹색콩 알파-갈락토시다아제를 pH 6.5, $4^{\circ}C$ 에서 24시간 처리하였을 때 형광염색이 거의 되지 않을 정도로 알파-갈 항원결정인자가 제거되었고 이는 효소의 농도를 2.0 unit/mL로 증가시켰을 때에도 비슷한 양상을 보였다. 돼지의 심낭 조직의 경우 효소 처리 전의 알파-갈 염색에서도 대동맥 판막조직에 비하여 많은 양의 형광염색을 보였으며 효소 처리의 농도도 대동맥 판막의 경우보다 높은 2.0 unit/mL의 농도에서 알파-갈 항원결정인자가 제거되는 양상을 보였다. 걸론: 돼지의 대동맥 판막 조직과 심낭 조직의 알파-갈 항원결정인자는 eriffonia simplicifolia의 동종렉틴 B4를 사용한 면역조직형광염색에서 잘 염색되었으며 이를 알파-갈락토시다아제를 사용하여 제거하였을 때 각각 1.0 unit/mL, 2.0 unit/mL 농도의 녹색콩 알파-갈락토시다아제를 $4^{\circ}C$ , pH 6.5의 조건에서 24시간 반응시켰을 때 효과적으로 상당량 제거할 수 있었다. 향후 돼지의 판막조직 및 심낭조직으로 만드는 조직판막의 내구성 증대에 대표적인 동물 면역항원인 알파-갈 항원결정인자의 제거가 유용한 도구가 될 수 있을 것이며 앞으로 알파-갈락토시다아제로 처리한 돼지의 조직판막에 대한 인간혈장의 항-갈 항체 및 항-갈 단클론항체를 이용한 직접적인 면역학적 연구가 필요하다. 【Background: It is currently thought that tissue valve degeneration is related to an animal's immune response, which is mainly due to cell surface ${\alpha}$ -Gal epitopes. Cell surface ${\alpha}$ -Gal epitopes are known to be degraded by the enzyme called green coffee bean ${\alpha}$ -Galactosidase. It is also well known that ${\alpha}$ -Gal epitopes are immunologically stained by Griffonia Simplicifolia isolectin type B4. We know that many commercially available tissue valves are made of aortic valves and pericardial tissue of pig. So, we investigated whether ${\alpha}$ -Gal epitopes of the aortic valve and pericardial tissue of a pig can be removed by green coffee bean ${\alpha}$ -Galactosidase, and we did so by comparing immunologic staining of the tissues before and after the enzyme treatment. Material and method: After treating fresh porcine aortic valve and pericardial tissue with green coffee bean ${\alpha}$ -Galactosidase at concentrations of 0.5 unit/mL, 1.0 unit/mL, 2.0 unit/mL, respectively, under the condition of pH 6.5, temperature. $4^{\circ}C$ and 24 hours of incubation, each sample was stained with Griffonia Simplicifolia isolectin type B4 immunpfluorescent labeling. We then examined whether the ${\alpha}$ -Gal epitopes were reduced or abolished in each consecutive. concentration of green coffee bean ${\alpha}$ -Galactosidase by comparing the degree of the Griffonia Simplicifolia isolectin B4 staining in each sample. Result: In the pig aortic valve tissue, a 1.0 unit/mL concentration of green coffee bean ${\alpha}$ -Galactosidase at pH 6.5, $4^{\circ}C$ and reaction for 24 hours was enough for complete removal of ${\alpha}$ -Gal epitopes from the cell sur face on the immunostaining with Griffonia Simplicifolia isolectin B4. On the other hand, more ${\alpha}$ -Gal epitopes were present in the pig pericardial tissue on Griffonia Simplicifolia isolectin B4 staining before the enzyme treatment, and 1.0 unit/mL of galactosidase was not sufficient for complete removal of ${\alpha}$ -Gal from the tissue. 2.0 units/mL of green coffee bean ${\alpha}$ -Galactosidase was needed to completely remove the ${\alpha}$ -Gal epitopes from the pericardial tissue on immunostaining. Conclusion: The ${\alpha}$ -Gal epitopes of the pig's aortic valve and pericardial tissue were successfully stained with Griffonia Simplicifolia isolectin B4. We could remove nearly all the ${\alpha}$ -Gal epitopes using green coffee bean ${\alpha}$ -Galactosidase at the concentration of 1.0 unit/mL in the aortic valve. Of pig, and 2.0 unit/mL was need to nearly completely remove all the ${\alpha}$ -Gal epitopes in the pericardial tissue of pig under the condition of pH 6.5, $4^{\circ}C$ and 24 hours of reaction time. In the near future, removal of ${\alpha}$ -Gal epitapes in the pig's aortic valve and pericardial tissue will become a powerful tool for the improvement of the tissue valve durability. It needs to be determined if ${\alpha}$ -galactosidase treated pig tissue is immune to human anti-Gal antibody or anit-Gal mooclonal antibodies.】
[1]
W. Klepetko,et al.
Alpha‐Gal on bioprostheses: xenograft immune response in cardiac surgery
,
2005,
European journal of clinical investigation.
[2]
H. Gabius,et al.
Solid phase measurements of antibody and lectin binding to xenogenic carbohydrate antigens.
,
2004,
Clinical biochemistry.
[3]
T. David,et al.
Is degenerative calcification of the native aortic valve similar to calcification of bioprosthetic heart valves?
,
2003,
The Journal of thoracic and cardiovascular surgery.
[4]
D. Adams,et al.
Mechanisms of Galα1-3Galβ1-4GlcNAc-R (αGal) expression on porcine valve endothelial cells
,
2003
.
[5]
S. H. A. Chen,et al.
Production of α1,3-Galactosyltransferase-Deficient Pigs
,
2002,
Science.
[6]
Yifan Dai,et al.
Targeted disruption of the α1,3-galactosyltransferase gene in cloned pigs
,
2002,
Nature Biotechnology.
[7]
P. Zilla,et al.
Characterization of the immune response to valve bioprostheses and its role in primary tissue failure.
,
2001,
The Annals of thoracic surgery.
[8]
S. Kirkeby,et al.
Binding of Griffonia simplicifolia 1 isolectin B4 (GS1 B4) to α‐galactose antigens
,
2001
.
[9]
R. Mitchell,et al.
Fresh porcine cardiac valves are not rejected in primates.
,
2000,
The Journal of thoracic and cardiovascular surgery.
[10]
T. Treasure.
Rethink on biological aortic valves for the elderly
,
1999,
The Lancet.
[11]
I. Goldstein,et al.
The Griffonia simplicifolia I-B4 isolectin. A probe for alpha-D-galactosyl end groups.
,
1999,
Sub-cellular biochemistry.
[12]
G. Ayala,et al.
Porcine cartilage transplants in the cynomolgus monkey. III. Transplantation of alpha-galactosidase-treated porcine cartilage.
,
1998,
Transplantation.
[13]
M. Radic,et al.
A sensitive assay for measuring alpha-Gal epitope expression on cells by a monoclonal anti-Gal antibody.
,
1998,
Transplantation.
[14]
U. Galili,et al.
Suppression of α-galactosyl epitopes synthesis and production of the natural anti-Gal antibody: a major evolutionary event in ancestral Old World primates
,
1995
.
[15]
A. Edge,et al.
ENZYMATIC REMOVAL OF ALPHA‐GALACTOSYL EPITOPES FROM PORCINE ENDOTHELIAL CELLS DIMINISHES THE CYTOTOXIC EFFECT OF NATURAL ANTIBODIES
,
1995,
Transplantation.
[16]
R. Oriol,et al.
CARBOHYDRATE ANTIGENS OF PIG TISSUES REACTING WITH HUMAN NATURAL ANTIBODIES AS POTENTIAL TARGETS FOR HYPERACUTE VASCULAR REJECTION IN PIG‐TO‐MAN ORGAN XENOTRANSPLANTATION1
,
1993,
Transplantation.
[17]
S. Shohet,et al.
Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells.
,
1988,
The Journal of biological chemistry.
[18]
S. Shohet,et al.
Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates.
,
1987,
Proceedings of the National Academy of Sciences of the United States of America.
[19]
L. A. Murphy,et al.
Carbohydrate binding studies on the Bandeiraea simplicifolia I isolectins. Lectins which are mono-, di-, tri-, and tetravalent for N-acetyl-D-galactosamine.
,
1981,
The Journal of biological chemistry.