Electrical resistivity of silicon nitride–silicon carbide based ternary composites
暂无分享,去创建一个
M. Herrmann | A. Michaelis | U. Guth | K. Sempf | H. Klemm | E. Zschippang
[1] H. Klemm. Silicon Nitride for High‐Temperature Applications , 2010 .
[2] J. Kuebler,et al. MoSi2–Si3N4 composites: Influence of starting materials and fabrication route on electrical and mechanical properties , 2009 .
[3] S. Guo,et al. Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .
[4] Jiecai Han,et al. The Effect of Si3N4 on Microstructure, Mechanical Properties and Oxidation Resistance of HfB2-based Composite , 2009 .
[5] J. Zaykoski,et al. High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .
[6] Hyunho Shin,et al. Reduced electrical resistivity of reaction-sintered SiC by nitrogen doping , 2008 .
[7] M. Herrmann,et al. The AC Conductivity of Liquid‐Phase‐Sintered Silicon Carbide , 2007 .
[8] J. Kuebler,et al. The effect of different sintering additives on the electrical and oxidation properties of Si3N4-MoSi2 composites , 2007 .
[9] Eun Dong Kim,et al. The Method for Enhancing Nitrogen Doping in 6H-SiC Single Crystals Grown by Sublimation Process: The Effect of Si Addition in SiC Powder Source , 2006 .
[10] Junichi Tatami,et al. Electrically Conductive CNT‐Dispersed Silicon Nitride Ceramics , 2005 .
[11] C. Hwang,et al. Densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid , 2004 .
[12] Jow-Lay Huang,et al. Tribological characteristics of Si3N4-based composites in unlubricated sliding against steel ball , 2004 .
[13] L. Živković,et al. Microstructural characterization and computer simulation of conductivity in Si3N4-TiN composites , 2004 .
[14] M. Herrmann,et al. Einsatz des Ionenstrahl-Böschungsschnitt-Verfahrens zur Untersuchung des Gefüges von Komposit-Keramiken mit extrem unterschiedlichen Komponenten (BN/TiB2) im Rasterelektronenmikroskop , 2004 .
[15] K. Niihara,et al. Preparation and properties of TiN–Si3N4 composites , 2004 .
[16] H. Kleebe,et al. Interface characteristics affecting electrical properties of Y-doped SiC , 2003 .
[17] A. Bellosi,et al. Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .
[18] C. Taut,et al. Long-term stability of nonoxide ceramics in an oxidative environment at 1500 °C , 2003 .
[19] Y. Noda,et al. Preparation of p- and n-type SiC-based thermoelectric materials by spark plasma sintering , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..
[20] Alida Bellosi,et al. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride , 2002 .
[21] M. Herrmann,et al. Silicon Nitride Ceramics , 2002 .
[22] S. Guicciardi,et al. Microstructure and properties of Si3N4-MoSi2 composites , 2002 .
[23] M. Lewis,et al. Mechanical properties and tribology of Si3N4–TiB2 ceramic composites produced by hot pressing and hot isostatic pressing , 2001 .
[24] Byong-Taek Lee,et al. Microstructural characterization of electroconductive Si3N4–TiN composites , 2001 .
[25] D. McLachlan. Analytical Functions for the dc and ac Conductivity of Conductor-Insulator Composites , 2000 .
[26] Ralf Riedel,et al. Handbook of ceramic hard materials. , 2000 .
[27] H. J.-L.,et al. Micro-electrode discharge machining of TiN/Si3 N4 composites , 2000 .
[28] V. Gubanov,et al. Doping in cubic silicon–carbide , 1999 .
[29] K. Yamada,et al. High temperature mechanical properties of Si3N4–MoSi2 and Si3N4–SiC composites with network structures of second phases , 1999 .
[30] Mohan G. Hebsur,et al. Development and characterization of SiC(f)/MoSi2–Si3N4(p) hybrid composites , 1999 .
[31] Minoru Taya,et al. PERCOLATION STUDY ON ELECTRICAL RESISTIVITY OF SIC/SI3N4 COMPOSITES WITH SEGREGATED DISTRIBUTION , 1998 .
[32] I. Gräf. Ionenätzen : Stand und Perspektiven für die Gefügekontrastierung keramischer und metallischer Werkstoffe. Teil III: Ionenätzen in der Metallographie , 1998 .
[33] I. Gräf,et al. Ionenätzen : Stand und Perspektiven für die Gefügekontrastierung keramischer und metallischer Werkstoffe. Teil II: Verfahren der Ionen-Ätztechnik , 1998 .
[34] I. Gräf. Ionenätzen : Stand und Perspektiven für die Gefügekontrastierung keramischer und metallischer Werkstoffe. Teil I: Entwicklung und physikalische Grundlagen des Ionenätzens , 1998 .
[35] Thomas Frank,et al. Doping of SiC by Implantation of Boron and Aluminum , 1997 .
[36] M. Kaufman,et al. Phase relations in the Mo-Si-C system relevant to the processing of MoSi2-SiC composites , 1994 .
[37] Ming Yuan Kao,et al. Properties of Silicon Nitride–Molybdenum Disilicide Particulate Ceramic Composites , 1993 .
[38] A. Kurtz,et al. Characterization of n-type beta -SiC as a piezoresistor , 1993 .
[39] N. Jacobson. Corrosion of Silicon-Based Ceramics in Combustion Environments , 1993 .
[40] Shoko Yoshikawa,et al. Resistivities of conductive composites , 1992 .
[41] K. Niihara,et al. Mechanical and Electrical Properties of Silicon Nitride–Silicon Carbide Nanocomposite Material , 1991 .
[42] R. Newnham,et al. Electrical Resistivity of Composites , 1990 .
[43] Pierre Delhaes,et al. Piezoresistivity of heterogeneous solids , 1987 .
[44] F. Carmona,et al. An experimental model for studying the effect of anisotropy on percolative conduction , 1980 .
[45] R. Kusy. Influence of particle size ratio on the continuity of aggregates , 1977 .
[46] A. Malliaris,et al. Influence of Particle Size on the Electrical Resistivity of Compacted Mixtures of Polymeric and Metallic Powders , 1971 .