Electrical resistivity of silicon nitride–silicon carbide based ternary composites

[1]  H. Klemm Silicon Nitride for High‐Temperature Applications , 2010 .

[2]  J. Kuebler,et al.  MoSi2–Si3N4 composites: Influence of starting materials and fabrication route on electrical and mechanical properties , 2009 .

[3]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[4]  Jiecai Han,et al.  The Effect of Si3N4 on Microstructure, Mechanical Properties and Oxidation Resistance of HfB2-based Composite , 2009 .

[5]  J. Zaykoski,et al.  High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .

[6]  Hyunho Shin,et al.  Reduced electrical resistivity of reaction-sintered SiC by nitrogen doping , 2008 .

[7]  M. Herrmann,et al.  The AC Conductivity of Liquid‐Phase‐Sintered Silicon Carbide , 2007 .

[8]  J. Kuebler,et al.  The effect of different sintering additives on the electrical and oxidation properties of Si3N4-MoSi2 composites , 2007 .

[9]  Eun Dong Kim,et al.  The Method for Enhancing Nitrogen Doping in 6H-SiC Single Crystals Grown by Sublimation Process: The Effect of Si Addition in SiC Powder Source , 2006 .

[10]  Junichi Tatami,et al.  Electrically Conductive CNT‐Dispersed Silicon Nitride Ceramics , 2005 .

[11]  C. Hwang,et al.  Densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid , 2004 .

[12]  Jow-Lay Huang,et al.  Tribological characteristics of Si3N4-based composites in unlubricated sliding against steel ball , 2004 .

[13]  L. Živković,et al.  Microstructural characterization and computer simulation of conductivity in Si3N4-TiN composites , 2004 .

[14]  M. Herrmann,et al.  Einsatz des Ionenstrahl-Böschungsschnitt-Verfahrens zur Untersuchung des Gefüges von Komposit-Keramiken mit extrem unterschiedlichen Komponenten (BN/TiB2) im Rasterelektronenmikroskop , 2004 .

[15]  K. Niihara,et al.  Preparation and properties of TiN–Si3N4 composites , 2004 .

[16]  H. Kleebe,et al.  Interface characteristics affecting electrical properties of Y-doped SiC , 2003 .

[17]  A. Bellosi,et al.  Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .

[18]  C. Taut,et al.  Long-term stability of nonoxide ceramics in an oxidative environment at 1500 °C , 2003 .

[19]  Y. Noda,et al.  Preparation of p- and n-type SiC-based thermoelectric materials by spark plasma sintering , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[20]  Alida Bellosi,et al.  Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride , 2002 .

[21]  M. Herrmann,et al.  Silicon Nitride Ceramics , 2002 .

[22]  S. Guicciardi,et al.  Microstructure and properties of Si3N4-MoSi2 composites , 2002 .

[23]  M. Lewis,et al.  Mechanical properties and tribology of Si3N4–TiB2 ceramic composites produced by hot pressing and hot isostatic pressing , 2001 .

[24]  Byong-Taek Lee,et al.  Microstructural characterization of electroconductive Si3N4–TiN composites , 2001 .

[25]  D. McLachlan Analytical Functions for the dc and ac Conductivity of Conductor-Insulator Composites , 2000 .

[26]  Ralf Riedel,et al.  Handbook of ceramic hard materials. , 2000 .

[27]  H. J.-L.,et al.  Micro-electrode discharge machining of TiN/Si3 N4 composites , 2000 .

[28]  V. Gubanov,et al.  Doping in cubic silicon–carbide , 1999 .

[29]  K. Yamada,et al.  High temperature mechanical properties of Si3N4–MoSi2 and Si3N4–SiC composites with network structures of second phases , 1999 .

[30]  Mohan G. Hebsur,et al.  Development and characterization of SiC(f)/MoSi2–Si3N4(p) hybrid composites , 1999 .

[31]  Minoru Taya,et al.  PERCOLATION STUDY ON ELECTRICAL RESISTIVITY OF SIC/SI3N4 COMPOSITES WITH SEGREGATED DISTRIBUTION , 1998 .

[32]  I. Gräf Ionenätzen : Stand und Perspektiven für die Gefügekontrastierung keramischer und metallischer Werkstoffe. Teil III: Ionenätzen in der Metallographie , 1998 .

[33]  I. Gräf,et al.  Ionenätzen : Stand und Perspektiven für die Gefügekontrastierung keramischer und metallischer Werkstoffe. Teil II: Verfahren der Ionen-Ätztechnik , 1998 .

[34]  I. Gräf Ionenätzen : Stand und Perspektiven für die Gefügekontrastierung keramischer und metallischer Werkstoffe. Teil I: Entwicklung und physikalische Grundlagen des Ionenätzens , 1998 .

[35]  Thomas Frank,et al.  Doping of SiC by Implantation of Boron and Aluminum , 1997 .

[36]  M. Kaufman,et al.  Phase relations in the Mo-Si-C system relevant to the processing of MoSi2-SiC composites , 1994 .

[37]  Ming Yuan Kao,et al.  Properties of Silicon Nitride–Molybdenum Disilicide Particulate Ceramic Composites , 1993 .

[38]  A. Kurtz,et al.  Characterization of n-type beta -SiC as a piezoresistor , 1993 .

[39]  N. Jacobson Corrosion of Silicon-Based Ceramics in Combustion Environments , 1993 .

[40]  Shoko Yoshikawa,et al.  Resistivities of conductive composites , 1992 .

[41]  K. Niihara,et al.  Mechanical and Electrical Properties of Silicon Nitride–Silicon Carbide Nanocomposite Material , 1991 .

[42]  R. Newnham,et al.  Electrical Resistivity of Composites , 1990 .

[43]  Pierre Delhaes,et al.  Piezoresistivity of heterogeneous solids , 1987 .

[44]  F. Carmona,et al.  An experimental model for studying the effect of anisotropy on percolative conduction , 1980 .

[45]  R. Kusy Influence of particle size ratio on the continuity of aggregates , 1977 .

[46]  A. Malliaris,et al.  Influence of Particle Size on the Electrical Resistivity of Compacted Mixtures of Polymeric and Metallic Powders , 1971 .