Design and Demonstration of a Multi-Fuel Automotive Fuel Processor With Novel Catalyst Integration and Rapid Control System

A complete automotive onboard multi-fuel fuel processing system (FPS) that addresses some of the key issues of catalyst utilization, fuel cell integration, and control has been developed and tested, producing up to 1.2 grams per second of hydrogen flow in a total package volume of 150 liters. The reforming reaction train includes an autothermal reforming (ATR) zone, water-gas shift (WGS), and preferential oxidation (PrOx), all integrated with heat exchange to preheat reactants and generate process steam. The WGS and PrOx catalysts are integrated on metallic supports within a novel modular catalyst coated heat exchanger design that incorporates catalytic reaction, air preheat, and steam generation in a single device. The use of the catalyst coated heat exchangers eliminates the need for separate high-temperature shift and low-temperature shift zones; these are replaced by a continuously cooled single WGS zone. Due to the novel integration of catalytic heat exchangers, this FPS uses approximately half the catalyst per unit hydrogen produced than the previous generation, allowing for significant cost reduction.© 2008 ASME