Anomalous photoluminescence in InP1−xBix

Low temperature photoluminescence (PL) from InP1−xBix thin films with Bi concentrations in the 0–2.49% range reveals anomalous spectral features with strong and very broad (linewidth of 700 nm) PL signals compared to other bismide alloys. Multiple transitions are observed and their energy levels are found much smaller than the band-gap measured from absorption measurements. These transitions are related to deep levels confirmed by deep level transient spectroscopy, which effectively trap free holes and enhance radiative recombination. The broad luminescence feature is beneficial for making super-luminescence diodes, which can theoretically enhance spatial resolution beyond 1 μm in optical coherent tomography (OCT).

[1]  S. Sweeney,et al.  The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing , 2012 .

[2]  J. Misiewicz,et al.  Temperature dependence of the band gap of GaSb1−xBix alloys with 0 < x ≤ 0.042 determined by photoreflectance , 2013 .

[3]  Q. Gong,et al.  Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1−xBix dilute bismide with x ≤ 0.034 , 2014 .

[4]  T. Tiedje,et al.  Giant Spin-Orbit Bowing in GaAs$_{1-x}$Bi$_{x}$ , 2007 .

[5]  A. Rebey,et al.  Atmospheric-pressure metalorganic vapour phase epitaxy optimization of GaAsBi alloy , 2008 .

[6]  D. Scanlon,et al.  Growth and properties of GaSbBi alloys , 2013 .

[7]  C. Wood,et al.  Indium antimonide‐bismuth compositions grown by molecular beam epitaxy , 1982 .

[8]  E. W. Williams,et al.  The isoelectronic trap bismuth in indium phosphide , 1971 .

[9]  D. G. Thomas,et al.  LUMINESCENCE DUE TO THE ISOELECTRONIC SUBSTITUTION OF BISMUTH FOR PHOSPHORUS IN GALLIUM PHOSPHIDE , 1966 .

[10]  Xiren Chen,et al.  Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence , 2013 .

[11]  A. Hallén,et al.  Growth of GaSb1−xBix by molecular beam epitaxy , 2012 .

[12]  T. Tiedje,et al.  Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix , 2008 .

[13]  J. Dongun Kim,et al.  Long-wavelength infrared photodetectors based on InSbBi grown on GaAs substrates , 1997 .

[14]  S. Yoona,et al.  Bi-induced vibrational modes in GaAsBi , 2005 .

[15]  W. Lu,et al.  Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer , 2006 .

[16]  C. Tan,et al.  Demonstration of InAsBi photoresponse beyond 3.5 μm , 2014 .

[17]  David J. Smith,et al.  Investigation of MBE-grown InAs 1-x Bi x alloys and Bi-mediated type-II superlattices by transmission electron microscopy , 2015 .

[18]  J. David,et al.  The effect of Bi composition to the optical quality of GaAs1−xBix , 2011 .

[19]  Q. Gong,et al.  Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy , 2014, Nanoscale Research Letters.

[20]  R. Reedy,et al.  Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs 1 − x Bi x , 2011 .

[21]  X. Chen,et al.  Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x). , 2015, Optics letters.

[22]  T. Jones,et al.  Low- and high-energy photoluminescence from GaSb1−xBix with 0 < x ≤ 0.042 , 2014 .

[23]  K. Oe,et al.  Structural and Energy-Gap Characterization of Metalorganic-Vapor-Phase-Epitaxy-Grown InAsBi , 1999 .

[24]  T. Jones,et al.  High Bi content GaSbBi alloys , 2014 .

[25]  G. B. Stringfellow,et al.  Organometallic vapor phase epitaxial growth and characterization of InAsBi and InAsSbBi , 1989 .

[26]  M. Seong,et al.  Overcoming limitations in semiconductor alloy design , 2001 .

[27]  D. F. Reyes,et al.  Formation of Tetragonal InBi Clusters in InAsBi/InAs(100) Heterostructures Grown by Molecular Beam Epitaxy , 2013 .

[28]  Manijeh Razeghi,et al.  Novel InTlSb and InSbBi alloys for uncooled photodetector applications , 1998, Photonics West.

[29]  C. Tu,et al.  Electrical properties of InP grown by gas‐source molecular beam epitaxy at low temperature , 1992 .

[30]  Alexandre Arnoult,et al.  Low-temperature photoluminescence study of exciton recombination in bulk GaAsBi , 2014, Nanoscale Research Letters.

[31]  T. Tiedje,et al.  Giant spin-orbit bowing in GaAs1-xBix. , 2006, Physical review letters.

[32]  T. Jones,et al.  Bi flux-dependent MBE growth of GaSbBi alloys , 2015 .

[33]  A. Mascarenhas,et al.  Kinetically limited growth of GaAsBi by molecular-beam epitaxy , 2012 .

[34]  Angelo Mascarenhas,et al.  Band gap of GaAs1−xBix, 0 , 2003 .

[35]  G. B. Stringfellow,et al.  Photoluminescence of InAsBi and InAsSbBi grown by organometallic vapor phase epitaxy , 1990 .

[36]  O. Wada,et al.  Temperature Dependence of GaAs1-xBix Band Gap Studied by Photoreflectance Spectroscopy , 2003 .

[37]  J. Chu,et al.  Competition of compressive strain with substrate misorientation in CuPt-type ordered GaInP/AlGaInP quantum wells , 2011 .

[38]  E. O’Reilly,et al.  Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs , 2011, 1111.4394.

[39]  François Schiettekatte,et al.  Molecular beam epitaxy growth of GaAs1−xBix , 2003 .

[40]  Q. Gong,et al.  InPBi Single Crystals Grown by Molecular Beam Epitaxy , 2014, Scientific Reports.

[41]  R. Kudrawiec,et al.  First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: chemical trends versus experimental data , 2015 .

[42]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[43]  R. T. Lynch,et al.  Interimpurity Recombinations Involving the Isoelectronic Trap Bismuth in Gallium Phosphide , 1969 .

[44]  D. F. Reyes,et al.  Photoluminescence Enhancement of InAs(Bi) Quantum Dots by Bi Clustering , 2013 .

[45]  S. Sweeney,et al.  Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared , 2013 .

[46]  G. Belenky,et al.  Molecular beam epitaxy control and photoluminescence properties of InAsBi , 2012 .

[47]  A. Hallén,et al.  Molecular beam epitaxy growth of InSb1 xBix thin films , 2013 .

[48]  J. Dongun Kim,et al.  Growth and characterization of InSbBi for long wavelength infrared photodetectors , 1997 .

[49]  Q. Gong,et al.  Effect of rapid thermal annealing on InP1−xBix grown by molecular beam epitaxy , 2015 .

[50]  Wladek Walukiewicz,et al.  Valence band anticrossing in mismatched III-V semiconductor alloys , 2007 .