From Output Feedback Pole-Assignment to Robust Stabilization

[1]  An Inverse Problem for Second Order Differential Systems and Waveform Design , 1974 .

[2]  Christopher I. Byrnes,et al.  Pole assignment by output feedback , 1989 .

[3]  H. Kimura Pole assignment by gain output feedback , 1975 .

[4]  H. Kimura Robust stabilizability for a class of transfer functions , 1983, The 22nd IEEE Conference on Decision and Control.

[5]  R. Hermann,et al.  Applications of algebraic geometry to systems theory--Part I , 1977 .

[6]  The pole placement map, its properties, and relationships to system invariants , 1993, IEEE Trans. Autom. Control..

[7]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[8]  R. Rado A THEOREM ON INDEPENDENCE RELATIONS , 1942 .

[9]  Joachim Rosenthal,et al.  New results in pole assignment by real output feedback , 1992 .

[10]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[11]  W. Wonham On pole assignment in multi-input controllable linear systems , 1967 .

[12]  J. Rosenthal On Dynamic Feedback Compensation and Compactification of Systems , 1994 .

[13]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[14]  Jan C. Willems A simple proof that n, 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[15]  R. Brockett,et al.  Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint , 1981 .

[16]  Wim H. Hesselink,et al.  Generic properties of the pole placement problem , 1978 .

[17]  W. Wolovich Linear multivariable systems , 1974 .

[18]  H. Rosenbrock Design of multivariable control systems using the inverse Nyquist array , 1969 .

[19]  P. Khargonekar,et al.  On the robust stability of linear time-invariant plants with unstructured uncertainty , 1987 .

[20]  H. Kimura A further result on the problem of pole assignment by output feedback , 1977 .