On Irreducibility of Tensor Products of Yangian Modules

We study the tensor product $V$ of any number of "elementary" irreducible modules over the Yangian of the general linear Lie algebra. An elementary module is determined by a skew Young diagram and by a complex parameter, and contains a vector called singular. We give sufficient conditions for cyclicity in $V$ of the tensor product of these singular vectors. By using this result, we give an irreducibility criterion for $V$ when each of the skew Young diagrams determining the tensor factors has rectangular shape.

[1]  V. Tarasov Structure of quantum L operators for the R matrix of the XXZ model , 1984 .

[2]  A. Pressley,et al.  Fundamental representations of Yangians and singularities of R-matrices. , 1991 .

[3]  E. Date,et al.  CALCULATION OF EXCITATION SPECTRA OF THE SPIN MODEL RELATED WITH THE VECTOR REPRESENTATION OF THE QUANTIZED AFFINE ALGEBRA OF TYPE $A_n^{(1)} $ , 1994 .

[4]  Ivan Cherednik,et al.  A new interpretation of Gelfand-Tzetlin bases , 1987 .

[5]  Vladimir Drinfeld,et al.  Hopf algebras and the quantum Yang-Baxter equation , 1985 .

[6]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[7]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[8]  V. Drinfeld A New realization of Yangians and quantized affine algebras , 1987 .

[9]  The orthogonal eigenbasis and norms of eigenvectors in the spin Calogero - Sutherland model , 1996, solv-int/9611006.

[10]  Yangians and Capelli identities , 1996, q-alg/9601027.

[11]  Skew Young Diagram Method in Spectral Decomposition of Integrable Lattice Models , 1996, q-alg/9607027.

[12]  V. Tarasov Irreducible monodromy matrices for the R matrix of the XXZ model and local lattice quantum Hamiltonians , 1985 .

[13]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[14]  I. Cherednik Special bases of irreducible representations of a degenerate affine Hecke algebra , 1986 .

[15]  N. Kitanine,et al.  Form factors of the XXZ Heisenberg spin-1/2 finite chain , 1998, math-ph/9807020.

[16]  V. Tarasov,et al.  Representations of Yangians with Gelfand-Zetlin Bases , 1995, q-alg/9502008.

[17]  G. Olshanskii,et al.  Representations of Infinite-Dimensional Classical Groups, Limits of Enveloping Algebras, and Yangians , 1991 .

[18]  A.-A.A. Jucys,et al.  Symmetric polynomials and the center of the symmetric group ring , 1974 .

[19]  G. Olshanskii,et al.  Yangians and Classical Lie Algebras , 1994, hep-th/9409025.