Chapter 6 Neuron network in catfish retina: 1968–1987

[1]  Michael Shantz,et al.  The bipolar cell , 1976, Vision Research.

[2]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  Minoru Tsukada,et al.  A Microcomputer System for Spatiotemporal Visual Receptive Field Analysis , 1985, IEEE Transactions on Biomedical Engineering.

[4]  J. Smyth,et al.  Progress in Clinical and Biological Research , 1979 .

[5]  K Naka,et al.  Dynamics of turtle horizontal cell response , 1985, The Journal of general physiology.

[6]  W. Stell,et al.  Rod and cone inputs to bipolar cells in goldfish retina , 1980, The Journal of comparative neurology.

[7]  K Naka,et al.  Dynamics of cockroach ocellar neurons , 1986, The Journal of general physiology.

[8]  H. Kolb,et al.  Synaptic organization of the outer plexiform layer of the turtle retina: an electron microscope study of serial sections , 1984, Journal of neurocytology.

[9]  Maksimova Em Effect of intracellular polarization of horizontal cells of the activity of ganglionic cells of fish retina , 1969 .

[10]  H. Sakai,et al.  Novel pathway connecting the outer and inner vertebrate retina , 1985, Nature.

[11]  C. Enroth-Cugell,et al.  Adaptation and dynamics of cat retinal ganglion cells , 1973, The Journal of physiology.

[12]  Marco Piccolino,et al.  Synaptic mechanisms involved in responses of chromaticity horizontal cells of turtle retina , 1980, Nature.

[13]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation , 1943 .

[14]  J Toyoda,et al.  Bipolar-amacrine transmission in the carp retina. , 1973, Vision research.

[15]  K Naka,et al.  Field adaptation in the horizontal cells. Rushtonian transformation. , 1985, Nihon Ika Daigaku zasshi.

[16]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[17]  F. Werblin,et al.  The response properties of the steady antagonistic surround in the mudpuppy retina. , 1978, The Journal of physiology.

[18]  M. Piccolino,et al.  Center-surround antagonistic organization in small-field luminosity horizontal cells of turtle retina. , 1981, Journal of neurophysiology.

[19]  J Toyoda,et al.  Ionic mechanisms of two types of on-center bipolar cells in the carp retina. II. The responses to annular illumination , 1981, The Journal of general physiology.

[20]  Scott J. Daly,et al.  Temporal information processing in cones: Effects of light adaptation on temporal summation and modulation , 1985, Vision Research.

[21]  K. Naka,et al.  Identification of multi-input biological systems. , 1974, IEEE transactions on bio-medical engineering.

[22]  K Naka,et al.  Signal transmission in the catfish retina. II. Transmission to type-N cell. , 1985, Journal of neurophysiology.

[23]  R. Dacheux,et al.  Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells , 1976, The Journal of general physiology.

[24]  K Naka,et al.  Functional organization of catfish retina. , 1977, Journal of neurophysiology.

[25]  A. S. French,et al.  Measuring the Wiener kernels of a non-linear system using the fast Fourier transform algorithm† , 1973 .

[26]  A Kaneko,et al.  Electrical connexions between horizontal cells in the dogfish retina , 1971, The Journal of physiology.

[27]  J. Dowling,et al.  Chemistry of Visual Adaptation in the Rat , 1960, Nature.

[28]  K. Donner,et al.  The effect of a coloured adapting field on the spectral sensitivity of frog retinal elements , 1959, The Journal of physiology.

[29]  T Kujiraoka,et al.  Reexamination of photoreceptor‐bipolar connectivity patterns in carp retina: HRP‐EM and golgi‐EM studies , 1985, The Journal of comparative neurology.

[30]  R. Shapley,et al.  Nonlinear analysis of cat retinal ganglion cells in the frequency domain. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Barlow,et al.  Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.

[32]  V. Torre,et al.  Self‐facilitation of ganglion cells in the retina of the turtle , 1977, The Journal of physiology.

[33]  K I Naka,et al.  Dynamics of turtle cones , 1987, The Journal of general physiology.

[34]  K. Naka,et al.  The generation and spread of S‐potentials in fish (Cyprinidae) , 1967, The Journal of physiology.

[35]  J. Dowling,et al.  Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  Y. Shimoda,et al.  Identification of amacrine and ganglion cells in the carp retina. , 1977, The Journal of physiology.

[37]  H Ripps,et al.  S-Potentials in the Skate Retina , 1971, The Journal of general physiology.

[38]  E. V. Famiglietti,et al.  ‘Starburst’ amacrine cells and cholinergic neurons: mirror-symmetric ON and OFF amacrine cells of rabbit retina , 1983, Brain Research.

[39]  H B BARLOW,et al.  THE ROLE OF AFTERIMAGES IN DARK ADAPTATION. , 1964, Science.

[40]  W. Stell,et al.  Retinal structure in the smooth dogfish, Mustelus canis: Light microscopy of bipolar cells , 1973, The Journal of comparative neurology.

[41]  W. Stell,et al.  Structural basis for on-and off-center responses in retinal bipolar cells. , 1977, Science.

[42]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[43]  W. G. Owen,et al.  Gap junctions among the perikarya, dendrites, and axon terminals of the luminosity‐type horizontal cell of the turtle retina , 1983, The Journal of comparative neurology.

[44]  S. Sharma,et al.  The visual system of the channel catfish (ictalurus punctatus). I. Retinal ganglion cell morphology , 1986, The Journal of comparative neurology.

[45]  E M Lasater,et al.  A white-noise analysis of responses and receptive fields of catfish cones. , 1982, Journal of neurophysiology.

[46]  E. Yamada,et al.  The fine structure of the horizontal cells in some vertebrate retinae. , 1965, Cold Spring Harbor symposia on quantitative biology.

[47]  K. Naka,et al.  Nonlinear analysis: mathematical theory and biological applications. , 1986, Critical reviews in biomedical engineering.

[48]  H M Sakai,et al.  Signal transmission in the catfish retina. V. Sensitivity and circuit. , 1987, Journal of neurophysiology.

[49]  M. Slaughter,et al.  Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: a model. , 1981, Journal of neurophysiology.

[50]  J. Dowling,et al.  Synapses of Horizontal Cells in Rabbit and Cat Retinas , 1966, Science.

[51]  K. Naka The horizontal cells. , 1972, Vision research.

[52]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[53]  W. Stell,et al.  Retinal structure in the smooth dogfish, Mustelus canis: General description and light microscopy of giant ganglion cells , 1973, The Journal of comparative neurology.

[54]  K I Naka,et al.  gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[55]  K Naka,et al.  Morphological and functional identifications of catfish retinal neurons. I. Classical morphology. , 1975, Journal of neurophysiology.

[56]  H. Sakai,et al.  Synaptic organization involving receptor, horizontal and on- and off-center bipolar cells in the catfish retina , 1983, Vision Research.

[57]  D. Mastronarde Interactions between ganglion cells in cat retina. , 1983, Journal of neurophysiology.

[58]  C F Tyner,et al.  The naming of neurons: applications of taxonomic theory to the study of cellular populations. , 1975, Brain, behavior and evolution.

[59]  K. Naka A class of catfish amacrine cells responds preferentially to objects which move vertically , 1980, Vision Research.

[60]  K I Naka,et al.  Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells , 1972, The Journal of physiology.

[61]  K. Naka Computer assisted analysis of S-potentials. , 1969, Biophysical journal.

[62]  K. Naka,et al.  Dynamics of the ganglion cell response in the catfish and frog retinas , 1987, The Journal of general physiology.

[63]  A Kaneko,et al.  Receptive field organization of bipolar and amacrine cells in the goldfish retina , 1973, The Journal of physiology.

[64]  J. Dowling,et al.  Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. , 1969, Journal of neurophysiology.

[65]  K. Naka,et al.  White-Noise Analysis of a Neuron Chain: An Application of the Wiener Theory , 1972, Science.

[66]  H. Sakai,et al.  Synaptic organization of the cone horizontal cells in the catfish retina , 1986, The Journal of comparative neurology.

[67]  R. Shapley,et al.  The effect of contrast on the non‐linear response of the Y cell. , 1980, The Journal of physiology.

[68]  P. W. Nye,et al.  Role of horizontal cells in organization of the catfish retinal receptive field. , 1971, Journal of neurophysiology.

[69]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[70]  K. Naka,et al.  Spatial organization of catfish retinal neurons. I. Single- and random-bar stimulation. , 1980, Journal of neurophysiology.

[71]  H M Sakai,et al.  Signal transmission in the catfish retina. IV. Transmission to ganglion cells. , 1987, Journal of neurophysiology.

[72]  E. A. Schwartz,et al.  Responses of bipolar cells in the retina of the turtle , 1974, The Journal of physiology.

[73]  Y. Chino,et al.  Dopaminergic amacrine cells in the retina of Japanese dace , 1986, Brain Research.

[74]  A. Kaneko,et al.  Retinal bipolar cells with double colour-opponent receptive fields , 1981, Nature.

[75]  S. Hecht,et al.  THE VISUAL DISCRIMINATION OF INTENSITY AND THE WEBER-FECHNER LAW , 1924, The Journal of general physiology.

[76]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[77]  K I Naka,et al.  Direct electrical connections between transient amacrine cells in the catfish retina. , 1981, Science.

[78]  K I Naka,et al.  Receptive Field Mechanism in the Vertebrate Retina , 1971, Science.

[79]  J. Victor Nonlinear systems analysis: comparison of white noise and sum of sinusoids in a biological system. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[80]  K. Naka,et al.  Spontaneous membrane fluctuation in catfish type-N cells , 1985, Vision Research.

[81]  K I Naka,et al.  S‐potential and dark adaptation in fish , 1968, The Journal of physiology.

[82]  P Z Marmarelis,et al.  Spatial distribution of potential in a flat cell. Application to the catfish horizontal cell layers. , 1972, Biophysical journal.

[83]  P. Marchiafava,et al.  The photoresponses of structurally identified amacrine cells in the turtle retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[84]  A. Kaneko,et al.  Electrophysiological study of single neurons in the inner nuclear layer of the carp retina. , 1969, Vision research.

[85]  J. Toyoda,et al.  Analyses of bipolar cell responses elicited by polarization of horizontal cells , 1982, The Journal of general physiology.

[86]  W. Rushton Review Lecture. Pigments and signals in colour vision , 1972 .

[87]  Theodore P. Williams,et al.  A critique of an incremental threshold function , 1977, Vision Research.

[88]  K Naka,et al.  Signal transmission in the catfish retina. I. Transmission in the outer retina. , 1985, Journal of neurophysiology.

[89]  P. Witkovsky,et al.  Interreceptoral junctions in the teleost retina. , 1974, Investigative ophthalmology.

[90]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[91]  T. Tomita Electrophysiological study of the mechanisms subserving color coding in the fish retina. , 1965, Cold Spring Harbor symposia on quantitative biology.

[92]  C. R. Marshall On the Antagonistic Action of Digitalis and the Members of the Nitrite Group , 1897, The Journal of physiology.

[93]  K Naka,et al.  Spatial organizations of catfish retinal neurons. II. Circular stimulus. , 1980, Journal of neurophysiology.

[94]  K. Naka,et al.  Morphological and functional identifications of catfish retinal neurons. III. Functional identification. , 1975, Journal of neurophysiology.

[95]  A. Lasansky Organization of the outer synaptic layer in the retina of the larval tiger salamander. , 1973, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  K. Naka,et al.  Morphological and functional identifications of catfish retinal neurons. II. Morphological identification. , 1975, Journal of neurophysiology.

[97]  W. Stell The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. , 1967, The American journal of anatomy.

[98]  D. Baylor,et al.  Electrical responses of single cones in the retina of the turtle , 1970, The Journal of physiology.

[99]  R. Shapley,et al.  Receptive field mechanisms of cat X and Y retinal ganglion cells , 1979, The Journal of general physiology.

[100]  A. Hodgkin,et al.  Detection and resolution of visual stimuli by turtle photoreceptors , 1973, The Journal of physiology.

[101]  William Albert Hugh Rushton,et al.  The Ferrier Lecture, 1962 Visual adaptation , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[102]  T. Lamb,et al.  The relation between intercellular coupling and electrical noise in turtle photoreceptors. , 1976, The Journal of physiology.

[103]  Kiyoko Yokoyama,et al.  Software System for Neuron Classification Based on Simple Parameters , 1986, IEEE Transactions on Biomedical Engineering.

[104]  P Z Marmarelis,et al.  Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. I. Horizontal cell leads to ganglion cell chain. , 1973, Journal of neurophysiology.

[105]  D. Copenhagen,et al.  Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[106]  K I Naka,et al.  White-noise analysis as a tool in visual physiology. , 1985, Progress in clinical and biological research.

[107]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[108]  J. McReynolds,et al.  Sustained synaptic input to ganglion cells of mudpuppy retina , 1982, The Journal of physiology.

[109]  K. Naka,et al.  The synaptic ultrastructure in the outer plexiform layer of the catfish retina: A three‐dimensional study with hvem and conventional em of golgi‐impregnated bipolar and horizontal cells , 1986, The Journal of comparative neurology.

[110]  K I Naka,et al.  Adaptation in catfish retina. , 1979, Journal of neurophysiology.

[111]  R. Marc,et al.  Horizontal cell synapses onto glycine-accumulating interplexiform cells , 1984, Nature.

[112]  P. Mcnaughton,et al.  Spatial spread of activation and background desensitization in toad rod outer segments , 1981, The Journal of physiology.

[113]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[114]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[115]  Effects of background and spatial pattern on incremental sensitivity of catfish horizontal cells , 1984, Vision Research.

[116]  F S Werblin,et al.  Regenerative amacrine cell depolarization and formation of on‐off ganglion cell response. , 1977, The Journal of physiology.

[117]  E. A. Schwartz,et al.  Organization of on‐off cells in the retina of the turtle , 1973, The Journal of physiology.

[118]  T. Kujiraoka,et al.  Connections between photoreceptors and horseradish peroxidase-injected bipolar cells in the carp retina , 1983, Vision Research.

[119]  K. Naka,et al.  Identification of intracellular responses in the frog retina. , 1972, Brain research.

[120]  K. Negishi,et al.  Effects of extrinsic horizontal cell polarization on spike discharges in the carp retina , 1978, Brain Research.

[121]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[122]  J. Dowling,et al.  Ganglion cell dendrites are presynaptic in catfish retina , 1986, Nature.

[123]  K. Tonosaki,et al.  Effect of polarisation of horizontal cells on the on-centre bipolar cell of carp retina , 1978, Nature.

[124]  H. Kolb,et al.  Light and electron microscopy of the photoreceptors in the retina of the red‐eared slider, Pseudemys scripta elegans , 1982, The Journal of comparative neurology.

[125]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[126]  Henk Spekreijse,et al.  Dynamic Characteristics of Retinal Ganglion Cell Responses in Goldfish , 1972, The Journal of general physiology.

[127]  J Toyoda,et al.  Frequency Characteristics of Retinal Neurons in the Carp , 1974, The Journal of general physiology.

[128]  A Kaneko,et al.  Neuronal architecture of on and off pathways to ganglion cells in carp retina. , 1977, Science.

[129]  K. Naka,et al.  Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. 3. Two-input white-noise analysis. , 1973, Journal of neurophysiology.

[130]  K. Naka,et al.  The amacrine cell , 1976, Vision Research.

[131]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[132]  K I Naka,et al.  Receptive-field organization of the catfish retina: are at least two lateral mechanisms involved? , 1970, Journal of neurophysiology.

[133]  R. Dacheux,et al.  Synaptic organization and ionic basis of on and off channels in mudpuppy retina. III. A model of ganglion cell receptive field organization based on chloride-free experiments , 1976, The Journal of general physiology.

[134]  K Naka,et al.  Spatio-Temporal Visual Receptive Fields as Revealed by Spatio-Temporal Random Noise , 1982, Zeitschrift fur Naturforschung. Section C, Biosciences.

[135]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[136]  W. Rushton Rhodopsin measurement and dark‐adaptation in a subject deficient in cone vision , 1961, The Journal of physiology.

[137]  W A Rushton,et al.  The rod increment threshold during dark adaptation in normal and rod monochromat. , 1965, The Journal of physiology.

[138]  K. Negishi,et al.  Functional and morphological correlates of amacrine cells in carp retina , 1987, Neuroscience.

[139]  R Shapley,et al.  Spatial and temporal properties of luminosity horizontal cells in the turtle retina , 1983, The Journal of general physiology.