A new model for silicon nanoparticle synthesis

Abstract This work presents a novel multivariate particle model to simulate the synthesis of silicon nanoparticles across a wide range of process conditions. The gas-phase mechanism of Ho et al. (1994, J. Phys. Chem. 98, 10138–10147) is simultaneously solved with a stochastic population balance incorporated a detailed multidimensional particle model. A systematic parameter estimation procedure is used to adjust gas-phase and heterogeneous pre-exponential factors to obtain fits with experimental results. The model is tested against a six different experimental configurations, with excellent fit observed for the majority of cases. It was found that primary particles were too large under conditions of finite-rate sintering, leading to the recommendation that the model could be made more robust by development of accurate sintering kinetics for silicon nanoparticles.

[1]  Markus Kraft,et al.  Modelling the flame synthesis of silica nanoparticles from tetraethoxysilane , 2012 .

[2]  J. Purnell,et al.  The pyrolysis of monosilane , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  H. Wiggers,et al.  Surface chemistry and photoluminescence property of functionalized silicon nanoparticles , 2009 .

[4]  L. Broadbelt,et al.  Detailed Kinetic Modeling of Silicon Nanoparticle Formation Chemistry via Automated Mechanism Generation , 2004 .

[5]  Sebastian Mosbach,et al.  Iterative improvement of Bayesian parameter estimates for an engine model by means of experimental design , 2012 .

[6]  R. I. A. PATTERSON,et al.  The Linear Process Deferment Algorithm: A new technique for solving population balance equations , 2006, SIAM J. Sci. Comput..

[7]  G. Leugering,et al.  Process control strategies for the gas phase synthesis of silicon nanoparticles , 2012 .

[8]  K. Sabelfeld,et al.  AEROSOL FORMATION UNDER HETEROGENEOUS/HOMOGENEOUS THERMAL DECOMPOSITION OF SILANE: EXPERIMENT AND NUMERICAL MODELING , 2000 .

[9]  William H. Green,et al.  A detailed kinetic model for combustion synthesis of titania from TiCl4 , 2009 .

[10]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[11]  J. Nishizawa,et al.  Gas-phase nucleation during the thermal decomposition of silane in hydrogen , 1976 .

[12]  Eli Ruckenstein,et al.  Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels , 2004 .

[13]  Robert I. A. Patterson,et al.  A predictor-corrector algorithm for the coupling of stiff ODEs to a particle population balance , 2009, J. Comput. Phys..

[14]  Jasdeep Singh,et al.  Extending stochastic soot simulation to higher pressures , 2006 .

[15]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[16]  Sebastian Mosbach,et al.  A fully coupled simulation of PAH and soot growth with a population balance model , 2013 .

[17]  Markus Kraft,et al.  A new numerical approach for the simulation of the growth of inorganic nanoparticles , 2006 .

[18]  Markus Kraft,et al.  Models for the aggregate structure of soot particles , 2007 .

[19]  Michael P. M. Jank,et al.  Aerosol synthesis of silicon nanoparticles with narrow size distribution—Part 1: Experimental investigations , 2010 .

[20]  Wolfgang Wagner,et al.  On a multivariate population balance model to describe the structure and composition of silica nanoparticles , 2012, Comput. Chem. Eng..

[21]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[22]  D. Adler,et al.  Laser‐induced chemical vapor deposition of hydrogenated amorphous silicon. II. Film properties , 1987 .

[23]  Michel Meunier,et al.  Laser‐induced chemical vapor deposition of hydrogenated amorphous silicon. I. Gas‐phase process model , 1987 .

[24]  Michael Frenklach,et al.  Numerical simulations of soot aggregation in premixed laminar flames , 2007 .

[25]  A. Onischuk,et al.  On the pathways of aerosol formation by thermal decomposition of silane , 1997 .

[26]  Hung V. Nguyen,et al.  A method for the synthesis of submicron particles , 1987 .

[27]  Sotiris E Pratsinis,et al.  Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles. , 2012, Journal of aerosol science.

[28]  W. Breiland,et al.  Laser-Induced Fluorescence Measurements and Kinetic Analysis of Si Atom Formation in a Rotating Disk Chemical Vapor Deposition Reactor , 1994 .

[29]  Mirella Musci,et al.  Laser Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon , 1982 .

[30]  R. A. Marra,et al.  Sinterable Ceramic Powders from Laser‐Driven Reactions: II, Powder Characteristics and Process Variables , 1982 .

[31]  Markus Kraft,et al.  The inverse problem in granulation modeling—Two different statistical approaches , 2011 .

[32]  W. Houf,et al.  A model for low pressure chemical vapor deposition in a hot-wall tubular reactor , 1993 .

[33]  Markus Kraft,et al.  Developing the PAH-PP soot particle model using process informatics and uncertainty propagation , 2011 .

[34]  F. Kruis,et al.  Homogeneous nucleation of silicon , 1994 .

[35]  A. Onischuk,et al.  Chemical composition and bond structure of aerosol particles of amorphous hydrogenated silicon forming from thermal decomposition of silane , 1997 .

[36]  A. Kjekshus,et al.  From monosilane to crystalline silicon, part II: Kinetic considerations on thermal decomposition of pressurized monosilane , 2006 .

[37]  R. Flagan,et al.  Onset of runaway nucleation in aerosol reactors , 1987 .

[38]  R. A. Marra,et al.  Sinterable Ceramic Powders from Laser-Driven Reactions: I, Process Description and Modeling , 1982 .

[39]  M. Kraft,et al.  A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles , 2012 .

[40]  Yutaka Maeda,et al.  Parameter Estimation using Simultaneous Perturbation Stochastic Approximation , 2004 .

[41]  H. Paur,et al.  Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation , 2005, Nanotechnology.

[42]  Katsuki Kusakabe,et al.  Growth and transformation of TiO2 crystallites in aerosol reactor , 1991 .

[43]  M. Swihart,et al.  Thermochemistry and Kinetics of Silicon Hydride Cluster Formation during Thermal Decomposition of Silane , 1999 .

[44]  Sotiris E. Pratsinis,et al.  A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering , 1993 .

[45]  P. Roth,et al.  High‐temperature kinetics of Si‐containing precursors for ceramic processing , 1997 .

[46]  W. Rieger,et al.  Mechanism of Cluster Formation in a Clean Silane Discharge , 1993 .

[47]  Markus Kraft,et al.  A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates , 2009 .

[48]  W. Breiland,et al.  Reactive sticking coefficients for silane and disilane on polycrystalline silicon , 1988 .

[49]  M. Koshi,et al.  Unimolecular decomposition of silane, fluorosilane, and difluorosilane at high temperatures , 1991 .

[50]  R. A. Marra,et al.  Powder Temperature, Size, and Number Density in Laser-Driven Reactions , 1986 .

[51]  M. Swihart,et al.  Computational Modeling of Silicon Nanoparticle Synthesis: I. A General Two-Dimensional Model , 2009 .

[52]  J. Purnell,et al.  The pyrolysis of disilane and rate constants of silene insertion reactions , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  M. Frenklach,et al.  Silicon Particle Formation in Pyrolysis of Silane and Disilane , 1996 .

[54]  L. Broadbelt,et al.  Exploring 1,2-hydrogen shift in silicon nanoparticles: reaction kinetics from quantum chemical calculations and derivation of transition state group additivity database. , 2009, The journal of physical chemistry. A.

[55]  J. Haggerty,et al.  A Model for the Growth of Silicon Particles from Laser-Heated Gases , 1990 .

[56]  S. Campbell,et al.  An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane , 2003 .

[57]  R. Flagan,et al.  Particle formation and growth in single-stage aerosol reactors , 1991 .

[58]  A. Onischuk,et al.  Studying of silane thermal decomposition mechanism , 1998 .

[59]  W. H. Weinberg,et al.  Hydrogen desorption from the monohydride phase on Si(100) , 1990 .

[60]  A. Kjekshus,et al.  From monosilane to crystalline silicon, Part I: Decomposition of monosilane at 690-830 K and initial pressures 0.1-6.6 MPa in a free-space reactor , 2005 .

[61]  M. Henzler,et al.  Adsorption of atomic hydrogen on clean cleaved silicon (111) , 1983 .

[62]  Markus Kraft,et al.  Modelling nanoparticle dynamics: coagulation, sintering, particle inception and surface growth , 2005 .

[63]  Robert I. A. Patterson,et al.  Application of stochastic weighted algorithms to a multidimensional silica particle model , 2013, J. Comput. Phys..

[64]  R. Flagan,et al.  Submicron silicon powder production in an aerosol reactor , 1986 .

[65]  H. Antoniadis Silicon Ink high efficiency solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[66]  Hung V. Nguyen,et al.  The Mobility and Structure of Aerosol Agglomerates , 1993 .

[67]  P. Roth,et al.  Formation of Si-nanoparticles in a microwave reactor: Comparison between experiments and modelling , 2005 .

[68]  P. Roth,et al.  Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. , 2004, Journal of nanoscience and nanotechnology.

[69]  W. Peukert,et al.  Aerosol synthesis of silicon nanoparticles with narrow size distribution—Part 2: Theoretical analysis of the formation mechanism , 2010 .

[70]  Robert J. Kee,et al.  SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface , 1996 .

[71]  W. Koch,et al.  The effect of particle coalescence on the surface area of a coagulating aerosol , 1990 .

[72]  A. Kjekshus,et al.  From monosilane to crystalline silicon. Part III. Characterization of amorphous, hydrogen-containing silicon products , 2005 .

[73]  M. Swihart,et al.  Computational Modeling of Silicon Nanoparticle Synthesis: II. A Two-Dimensional Bivariate Model for Silicon Nanoparticle Synthesis in a Laser-Driven Reactor Including Finite-Rate Coalescence , 2009 .

[74]  K. Sabelfeld,et al.  Aggregate Formation Under Homogeneous Silane Thermal Decomposition , 2000 .

[75]  M. Zachariah,et al.  Molecular Dynamics Computation of Gas-Phase Nanoparticle Sintering: A Comparison with Phenomenological Models , 1999 .

[76]  S. Griffis EDITOR , 1997, Journal of Navigation.

[77]  Sebastian Mosbach,et al.  Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study , 2012 .

[78]  R. Gordon,et al.  Gas‐phase kinetics in the atmospheric pressure chemical vapor deposition of silicon from silane and disilane , 1990 .

[79]  Markus Kraft,et al.  Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting , 2007 .

[80]  D. Antoniadis,et al.  Memory effects in metal-oxide-semiconductor capacitors incorporating dispensed highly monodisperse 1 nm silicon nanoparticles , 2007 .