Minimization of the energy storage requirements of a stand‐alone wind power installation by means of photovoltaic panels

[1]  John K. Kaldellis,et al.  Optimum autonomous wind–power system sizing for remote consumers, using long-term wind speed data , 2002 .

[2]  H. Beyer,et al.  Operational behaviour of wind diesel systems incorporating short-term storage: An analysis via simulation calculations , 1995 .

[3]  J. K. Kaldellis,et al.  Optimum Stand-Alone PV Solution, Including Financial Aspects , 2000 .

[4]  Gilles Notton,et al.  Wind hybrid electrical supply system: behaviour simulation and sizing optimization , 2001 .

[5]  John K. Kaldellis,et al.  Optimum technoeconomic energy autonomous photovoltaic solution for remote consumers throughout Greece , 2004 .

[6]  J. K. Kaldellis,et al.  Integrated energy balance analysis of a stand‐alone wind power system for various typical Aegean Sea regions , 2002 .

[7]  A. Masini,et al.  Forecasting the diffusion of photovoltaic systems in southern Europe: A learning curve approach $ , 2003 .

[8]  John K. Kaldellis,et al.  An Integrated Feasibility Analysis of a Stand‐alone Wind Power System, including No‐energy Fulfillment Cost , 2003 .

[9]  B. J. Brinkworth,et al.  Sizing and techno-economical optimization for hybrid solar photovoltaic/wind power systems with battery storage , 1997 .

[10]  A. Louche,et al.  DESIGN OF HYBRID-PHOTOVOLTAIC POWER GENERATOR, WITH OPTIMIZATION OF ENERGY MANAGEMENT , 1999 .

[11]  A. D. Papatsoris,et al.  The economics of photovoltaic stand-alone residential households: A case study for various European and Mediterranean locations , 2000 .

[12]  Moncef Jraidi,et al.  A battery ageing model used in stand alone PV systems , 2002 .