Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application

ZrO2 is investigated in this work to replace SiO2 as the gate dielectric material in metal-oxide-semiconductor devices for its high dielectric constant, good thermal stability on silicon, and large band gap. ZrO2 films were deposited on p-Si(100) wafers by a rapid thermal chemical vapor deposition process using a zirconium (IV) t-butoxide Zr(OC4H9)4 precursor and oxygen. At temperatures between 300 and 400 °C, the reaction was thermally activated with an activation energy of 29 kcal/mol, consistent with a β-hydride elimination mechanism leading to ZrO2 deposition. In this regime at substrate temperatures below 350 °C, one atomic layer of ZrO2 can be deposited after each alternating exposure to the precursor and oxygen, ideal for achieving conformal coverage of ZrO2 over high aspect ratio features. Stoichiometric, uniform, and amorphous ZrO2 was obtained, and highly conformal step coverage of the deposited ZrO2 was observed on 300 nm features with an aspect ratio of 4. The dielectric constant of ZrO2 achie...

[1]  Jane P. Chang,et al.  Highly conformal ZrO2 deposition for dynamic random access memory application , 2001 .

[2]  Dim-Lee Kwong,et al.  Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100) , 2001 .

[3]  S. George,et al.  ZrO2 film growth by chemical vapor deposition using zirconium tetra-tert-butoxide , 1999 .

[4]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[5]  Robert M. Wallace,et al.  ELECTRICAL PROPERTIES OF HAFNIUM SILICATE GATE DIELECTRICS DEPOSITED DIRECTLY ON SILICON , 1999 .

[6]  P. Silverman,et al.  Ultra-thin gate oxides and ultra-shallow junctions for high performance, sub-100 nm pMOSFETs , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[7]  M.D. Morris,et al.  Gate quality doped high K films for CMOS beyond 100 nm: 3-10 nm Al/sub 2/O/sub 3/ with low leakage and low interface states , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[8]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[9]  Aron Pinczuk,et al.  Nitrogen plasma annealing for low temperature Ta2O5 films , 1998 .

[10]  T. Ma,et al.  SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer , 1998 .

[11]  G. Lucovsky Monolayer incorporation of nitrogen at Si–SiO2 interfaces: Interface characterization and electrical properties , 1998 .

[12]  J. Autran,et al.  Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications , 1998 .

[13]  Geun-hong Kim,et al.  Microstructure and electric properties of the PZT thin films fabricated by ECR PECVD: the effects of an interfacial layer and rapid thermal annealing , 1998 .

[14]  Tso-Ping Ma,et al.  Making silicon nitride film a viable gate dielectric , 1998 .

[15]  R. M. Fleming,et al.  Discovery of a useful thin-film dielectric using a composition-spread approach , 1998, Nature.

[16]  Martin L. Green,et al.  The composition of ultrathin silicon oxynitrides thermally grown in nitric oxide , 1997 .

[17]  James H. Stathis,et al.  On the relationship between stress induced leakage currents and catastrophic breakdown in ultra-thin SiO2 based dielectrics , 1997 .

[18]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact with silicon , 1996 .

[19]  S. Isotani,et al.  Effects of ion energy and arrival rate on the composition of zirconium oxide films prepared by ion‐beam assisted deposition , 1996 .

[20]  Z. Lu,et al.  Rapid thermal N2O oxynitride on Si(100) , 1996 .

[21]  Y. Matsui,et al.  Ultrathin Silicon Nitride Films Fabricated by Single‐Wafer Processing Using an SiH2Cl2 ‐ NH 3 ‐ H 2 System and In Situ H 2 Cleaning , 1996 .

[22]  J. Wortman,et al.  High quality gate dielectrics formed by rapid thermal chemical vapor deposition of silane and nitrous oxide , 1996 .

[23]  Balzaretti,et al.  Pressure dependence of the refractive index of monoclinic and yttria-stabilized cubic zirconia. , 1995, Physical review. B, Condensed matter.

[24]  Robert A. Buhrman,et al.  N depth profiles in thin SiO2 grown or processed in N2O: The role of atomic oxygen , 1995 .

[25]  D. Wristers,et al.  Effects of chemical composition on the electrical properties of NO‐nitrided SiO2 , 1995 .

[26]  Ching,et al.  Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. , 1994, Physical review. B, Condensed matter.

[27]  Laura L. Tedder,et al.  Model studies of dielectric thin film growth: Chemical vapor deposition of SiO2 , 1990 .

[28]  Raymond M. Brusasco,et al.  High Index Of Refraction Films For Dielectric Mirrors Prepared By Metal-Organic Chemical Vapor Deposition , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[29]  Y. Takahashi,et al.  Chemical vapour deposition of undoped and spinel-doped cubic zirconia film using organometallic process , 1986 .

[30]  M. Balog,et al.  The Characteristics of Growth of Films of Zirconium and Hafnium Oxides (ZrO2, HfO2) by Thermal Decomposition of Zirconium and Hafnium β‐Diketonate Complexes in the Presence and Absence of Oxygen , 1979 .

[31]  R. Ruh,et al.  Nonstoichiometry of ZrO2 and Its Relation to Tetragonal‐Cubic Inversion in ZrO2 , 1967 .

[32]  P. Kofstad,et al.  On the Defect Structure of ZrO2 and HfO2 , 1963 .

[33]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[34]  C. F. Cline,et al.  Verification of Existence of Cubic Zirconia at High Temperature , 1962 .

[35]  C. Lynch,et al.  Monoclinic‐Tetragonal Transition of Zirconia , 1961 .

[36]  C. Youn,et al.  Preparation of PbTiO3 thin films by plasma enhanced MOCVD and the effect of rapid thermal annealing , 1997 .

[37]  C. Catlow 2 – Defect Clustering in Nonstoichiometric Oxides , 1981 .

[38]  L. A. McClaine,et al.  Electrical Conductivity Studies of Tetragonal Zirconia , 1966 .