Optical tweezing beam control using liquid crystal adaptive optical elements

Liquid crystal (LC) adaptive optical elements are described, which provide an alternative to existing micropositioning technologies in optical tweezing. A full description of this work is given in [1]. An adaptive LC prism supplies tip/tilt to the phase profile of the trapping beam, giving rise to an available steering radius within the x-y plane of 10 μm. Additionally, a modally addressed adaptive LC lens provides defocus, offering a z-focal range for the trapping site of 100 μm. The result is full three-dimensional positional control of trapped particle(s) using a simple and wholly electronic control system. Compared to competing technologies, these devices provide a lower degree of controllability, but have the advantage of simplicity, cost and light efficiency. Furthermore, due to their birefringence, LC elements offer the opportunity of the creation of dual optical traps with controllable depth and separation.

[1]  Shanti Bhattacharya,et al.  Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup , 2001 .

[2]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[3]  Jesper Glückstad,et al.  Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method , 2000 .

[4]  G. Love,et al.  Liquid-crystal prisms for tip-tilt adaptive optics. , 1994, Optics letters.

[5]  Peter John Rodrigo,et al.  Real-time three-dimensional optical micromanipulation of multiple particles and living cells. , 2004, Optics letters.

[6]  Jesper Glückstad,et al.  Dynamically reconfigurable optical lattices. , 2005, Optics express.

[7]  G. Vdovin,et al.  Liquid-crystal adaptive lenses with modal control. , 1998, Optics letters.

[8]  Susumu Sato,et al.  Optical Trapping and Manipulation System Using Liquid-Crystal Lens with Focusing and Deflection Properties , 2005 .

[9]  S. Kawata,et al.  Adaptive aberration correction in a two‐photon microscope , 2000, Journal of microscopy.

[10]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[11]  K. Dholakia,et al.  One-dimensional optically bound arrays of microscopic particles. , 2002, Physical review letters.

[12]  Jean-Marc R. Fournier,et al.  Writing diffractive structures by optical trapping , 1995, Electronic Imaging.

[13]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[14]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[15]  Vincent Laude,et al.  Liquid-crystal active lens: application to image resolution enhancement , 1999 .

[16]  Jesper Glückstad,et al.  Multiple-beam optical tweezers generated by the generalized phase-contrast method. , 2002, Optics letters.

[17]  Gordon D. Love,et al.  Adaptive modally addressed liquid crystal lenses , 2004, SPIE Optics + Photonics.

[18]  Jesper Glückstad,et al.  Dynamic array generation and pattern formation for optical tweezers , 2000 .

[19]  P. Hands,et al.  Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells. , 2006, Optics express.

[20]  G. Love,et al.  Control optimization of spherical modal liquid crystal lenses. , 1999, Optics express.

[21]  Gordon D. Love,et al.  Optical design of liquid crystal lenses: off-axis modelling , 2005, SPIE Optics + Photonics.

[22]  Michael P. MacDonald,et al.  Optical Tweezers: the next generation , 2002 .

[23]  Peter John Rodrigo,et al.  Four-dimensional optical manipulation of colloidal particles , 2005 .

[24]  Ashkin,et al.  Observation of radiation-pressure trapping of particles by alternating light beams. , 1985, Physical review letters.