Impacts of ocean acidification on marine shelled molluscs

Over the next century, elevated quantities of atmospheric CO2 are expected to penetrate into the oceans, causing a reduction in pH (−0.3/−0.4 pH unit in the surface ocean) and in the concentration of carbonate ions (so-called ocean acidification). Of growing concern are the impacts that this will have on marine and estuarine organisms and ecosystems. Marine shelled molluscs, which colonized a large latitudinal gradient and can be found from intertidal to deep-sea habitats, are economically and ecologically important species providing essential ecosystem services including habitat structure for benthic organisms, water purification and a food source for other organisms. The effects of ocean acidification on the growth and shell production by juvenile and adult shelled molluscs are variable among species and even within the same species, precluding the drawing of a general picture. This is, however, not the case for pteropods, with all species tested so far, being negatively impacted by ocean acidification. The blood of shelled molluscs may exhibit lower pH with consequences for several physiological processes (e.g. respiration, excretion, etc.) and, in some cases, increased mortality in the long term. While fertilization may remain unaffected by elevated pCO2, embryonic and larval development will be highly sensitive with important reductions in size and decreased survival of larvae, increases in the number of abnormal larvae and an increase in the developmental time. There are big gaps in the current understanding of the biological consequences of an acidifying ocean on shelled molluscs. For instance, the natural variability of pH and the interactions of changes in the carbonate chemistry with changes in other environmental stressors such as increased temperature and changing salinity, the effects of species interactions, as well as the capacity of the organisms to acclimate and/or adapt to changing environmental conditions are poorly described.

[1]  F. Melzner,et al.  Acid-base regulatory capacity and associated proton extrusion mechanisms in marine invertebrates: An overview , 2009 .

[2]  P. Qian,et al.  Analysis of Pacific oyster larval proteome and its response to high-CO2. , 2012, Marine pollution bulletin.

[3]  A. Calabrese,et al.  THE pH TOLERANCE OF EMBRYOS AND LARVAE OF MERCENARIA MERCENARIA AND CRASSOSTREA VIRGINICA , 1966 .

[4]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[5]  C. Gobler,et al.  Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves , 2011, PloS one.

[6]  M. Ohman,et al.  Multi‐decadal variations in calcareous holozooplankton in the California Current System: Thecosome pteropods, heteropods, and foraminifera , 2009 .

[7]  J. Hall‐Spencer,et al.  Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents , 2010 .

[8]  J. Beukema,et al.  An estimate of the sustainable rate of shell extraction from the Dutch Wadden Sea , 1999 .

[9]  R. Hyne,et al.  Toxicity of acid-sulfate soil leachate and aluminum to embryos of the Sydney Rock oyster. , 1997, Ecotoxicology and environmental safety.

[10]  L. Airoldi,et al.  Loss, status and trends for coastal marine habitats of Europe , 2007 .

[11]  J. Clavier,et al.  Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicata , 2007 .

[12]  W. Howard,et al.  Interannual pteropod variability in sediment traps deployed above and below the aragonite saturation horizon in the Sub-Antarctic Southern Ocean , 2011, Polar Biology.

[13]  H. Kurihara,et al.  Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis , 2008 .

[14]  H. Asmus,et al.  Mussel beds: limiting or promoting phytoplankton? , 1991 .

[15]  J. Jaubert,et al.  Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral , 2003 .

[16]  H. Thornton,et al.  Effect of increased atmospheric CO2 on shallow water marine benthos , 2005 .

[17]  U. Riebesell,et al.  Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic , 2012 .

[18]  Magdalena A. Gutowska,et al.  Food Supply and Seawater pCO2 Impact Calcification and Internal Shell Dissolution in the Blue Mussel Mytilus edulis , 2011, PloS one.

[19]  H. Davis SURVIVAL AND GROWTH OF CLAM AND OYSTER LARVAE AT DIFFERENT SALINITIES , 1958 .

[20]  P. Almada-Villela The Effects of Reduced Salinity on the Shell Growth of Small Mytilus Edulis , 1984, Journal of the Marine Biological Association of the United Kingdom.

[21]  Drake Circus Short-term exposure to hypercapnia does not compromise feeding, acid-base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage , 2010 .

[22]  B. Delille,et al.  Carbon dioxide in European coastal waters , 2006 .

[23]  X. Álvarez‐Salgado,et al.  Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidification , 2012 .

[24]  K. E. Zachariassen,et al.  Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae). , 2011, Marine environmental research.

[25]  R. Primicerio,et al.  Limacina retroversa's response to combined effects of ocean acidification and sea water freshening , 2012 .

[26]  T. K. Jana,et al.  Biocalcification of aragonite by tellinid bivalve Macoma birmanica (Philippi) on the tidal mudflat in the Sundarban mangrove forest, north-east coast of India , 1999 .

[27]  P. Manríquez,et al.  Impact of medium-term exposure to elevated pCO(2) levels on the physiological energetics of the mussel Mytilus chilensis. , 2013, Chemosphere.

[28]  Yohey Suzuki,et al.  Single host and symbiont lineages of hydrothermal-vent gastropods Ifremeria nautilei (Provannidae) : biogeography and evolution , 2006 .

[29]  B. Seibel,et al.  Energetic Plasticity Underlies a Variable Response to Ocean Acidification in the Pteropod, Limacina helicina antarctica , 2012, PloS one.

[30]  A. Ivanina,et al.  Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress , 2011, Journal of Experimental Biology.

[31]  H. Kurihara,et al.  Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas , 2007 .

[32]  S. Comeau,et al.  Response of the Arctic Pteropod Limacina helicina to Projected Future Environmental Conditions , 2010, PloS one.

[33]  H. Pörtner,et al.  Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus , 2007 .

[34]  Maria Byrne,et al.  Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios , 2009, Proceedings of the Royal Society B: Biological Sciences.

[35]  J. Berge,et al.  Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. , 2006, Chemosphere.

[36]  W. O'Connor,et al.  The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850) , 2009 .

[37]  D. Mackas,et al.  Pteropod time-series from the NE Pacific , 2012 .

[38]  S. V. Smith,et al.  Carbon dioxide and metabolism in marine environments1 , 1975 .

[39]  Mark A. Green,et al.  Dissolution mortality of juvenile bivalves in coastal marine deposits , 2004 .

[40]  Janet K. Thompson,et al.  Clams as CO2 generators: The Potamocorbula amurensis example in San Francisco Bay , 2003 .

[41]  M. Vincx,et al.  The Early Life History of the Clam Macoma balthica in a High CO2 World , 2012, PloS one.

[42]  V. Thiyagarajan,et al.  Larval growth response of the Portuguese oyster (Crassostrea angulata) to multiple climate change stressors , 2012 .

[43]  V. Metcalf,et al.  Ocean Acidification at High Latitudes: Potential Effects on Functioning of the Antarctic Bivalve Laternula elliptica , 2011, PloS one.

[44]  L. Chícharo,et al.  Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: Variable responses to ocean acidification at local scales? , 2011 .

[45]  R. Feely,et al.  Evidence for Upwelling of Corrosive "Acidified" Water onto the Continental Shelf , 2008, Science.

[46]  Francesco Paolo Patti,et al.  Coral and mollusc resistance to ocean acidification adversely affected by warming , 2011 .

[47]  R. Bamber The effects of acidic seawater on three species of lamellibranch mollusc , 1990 .

[48]  J. Dodd,et al.  TEMPERATURE AND SALINITY EFFECTS ON CALCIFICATION RATE IN MYTILUS EDULIS AND ITS PALEOECOLOGICAL IMPLICATONS1 , 1967 .

[49]  S. Sato,et al.  Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosomajaponicum in Japan , 2003 .

[50]  Steven E. Lohrenz,et al.  Acidification of subsurface coastal waters enhanced by eutrophication , 2011 .

[51]  P. Mcelhany,et al.  Appropriate pCO2 treatments in ocean acidification experiments , 2013 .

[52]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[53]  C. Gobler,et al.  Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish , 2010, Proceedings of the National Academy of Sciences.

[54]  L. Brečević,et al.  Solubility of amorphous calcium carbonate , 1989 .

[55]  W. Berger Deep-sea carbonate: pteropod distribution and the aragonite compensation depth , 1978 .

[56]  R. W. Gilmer,et al.  Pelagic Snails , 1989 .

[57]  J. Hall‐Spencer,et al.  Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. , 2009 .

[58]  C. Sindermann Diseases of marine shellfish , 1990 .

[59]  H. Pörtner,et al.  Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response , 2010, Marine drugs.

[60]  K. Soetaert,et al.  Seasonal and long-term changes in pH in the Dutch coastal zone , 2010 .

[61]  J. O. Harris,et al.  Effect of pH on growth rate, oxygen consumption rate, and histopathology of gill and kidney tissue for juvenile greenlip abalone, Haliotis laevigata donovan and blacklip abalone, Haliotis rubra leach , 1999 .

[62]  T. Ono,et al.  Effects of elevated pCO2 on the early development of the commercially important gastropod, Ezo abalone Haliotis discus hannai , 2011 .

[63]  A. Körtzinger,et al.  Calcifying invertebrates succeed in a naturally CO 2 -rich coastal habitat but are threatened by high levels of future acidification , 2010 .

[64]  Nils Kautsky,et al.  Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning , 2007 .

[65]  H. Pörtner,et al.  Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids , 2010, Journal of Comparative Physiology B.

[66]  C. Harley,et al.  Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification , 2011, PloS one.

[67]  H. Cabral,et al.  Moderate acidification affects growth but not survival of 6-month-old oysters , 2011, Aquatic Ecology.

[68]  H. Pörtner,et al.  Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History , 2004 .

[69]  E. Koch,et al.  Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization , 2004 .

[70]  Mark A. Green,et al.  Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. , 2010 .

[71]  C. Harley,et al.  Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm , 2009, Proceedings of the National Academy of Sciences.

[72]  W. O'Connor,et al.  Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters , 2010 .

[73]  H. Pörtner,et al.  Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway , 2013 .

[74]  T Morita,et al.  A carbonic anhydrase from the nacreous layer in oyster pearls. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[75]  P. Kareiva,et al.  Ecosystem services , 2005, Current Biology.

[76]  J. Neff,et al.  Decalcification at the Mantle-Shell Interface in Molluscs , 1969 .

[77]  E. Gosling Bivalve Molluscs: Biology, Ecology and Culture , 2003 .

[78]  J. E. Winter A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems , 1978 .

[79]  C. Harley,et al.  Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail , 2010, Proceedings of the Royal Society B: Biological Sciences.

[80]  Wayne S Gardner,et al.  Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface , 2000 .

[81]  J. Kere,et al.  Hemocyte-Mediated Shell Mineralization in the Eastern Oyster , 2004, Science.

[82]  P. Southgate,et al.  Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa , 2012 .

[83]  R. Day,et al.  Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification , 2012, Global change biology.

[84]  R. Berner,et al.  Pelagic sedimentation of aragonite: its geochemical significance. , 1981, Science.

[85]  J. Clavier,et al.  Respiration, calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.: Implications for carbon, carbonate, and nitrogen fluxes in affected areas , 2006 .

[86]  R. Feely,et al.  The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near‐term ocean acidification effects , 2012 .

[87]  U. Riebesell,et al.  Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth , 2010 .

[88]  S. Comeau,et al.  Impact of ocean acidification on a key Arctic pelagic mollusc ( Limacina helicina ) , 2009 .

[89]  R. Berner Sedimentation and Dissolution of Pteropods in the Ocean , 1977 .

[90]  M. Antonietti,et al.  Amorphous layer around aragonite platelets in nacre. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[91]  J. Gattuso,et al.  Response of Mediterranean coralline algae to ocean acidification and elevated temperature , 2009 .

[92]  R. Pipe,et al.  Environmental contaminants influencing immunefunction in marine bivalve molluscs , 1995 .

[93]  J. Burkholder,et al.  Effects of the toxic dinoflagellate Alexandrium monilatum on survival, grazing and behavioral response of three ecologically important bivalve molluscs , 2010 .

[94]  Robert B. Halley,et al.  Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay , 2006 .

[95]  Mark L. Green,et al.  Coastal Acidification by Rivers: A Threat to Shellfish? , 2008 .

[96]  J. Davenport,et al.  The effects of temperature on the shell growth of young mytilus edulis L. , 1982 .

[97]  F. Melzner,et al.  Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis , 2010 .

[98]  F. Bonhomme,et al.  High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses , 2002 .

[99]  J. Ries,et al.  Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification , 2009 .

[100]  B. Seibel,et al.  Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific , 2012 .

[101]  C. Heip,et al.  Effect of Carbonate Chemistry Alteration on the Early Embryonic Development of the Pacific Oyster (Crassostrea gigas) , 2011, PloS one.

[102]  Loosanoff Vl,et al.  Effect of low pH upon rate of water pumping of oysters, Ostrea virginica. , 1947 .

[103]  S. Comeau,et al.  Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less , 2010 .

[104]  K. Caldeira,et al.  Oceanography: Anthropogenic carbon and ocean pH , 2003, Nature.

[105]  J. Forester,et al.  Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset , 2008, Proceedings of the National Academy of Sciences.

[106]  R. Feely,et al.  Extensive dissolution of live pteropods in the Southern Ocean , 2012 .

[107]  J. Stinchcombe,et al.  How much do genetic covariances alter the rate of adaptation? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[108]  M. Byrne,et al.  Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification , 2010 .

[109]  A. Ivanina,et al.  Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica , 2010 .

[110]  C. Heip,et al.  Impact of elevated CO 2 on shellfish calcification , 2007 .

[111]  J. Beukema Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: II the edible cockle, cerastoderma edule , 1982 .

[112]  T. Pichler,et al.  Changes in Benthic Macrofauna Associated with a Shallow-Water Hydrothermal Vent Gradient in Papua New Guinea 1 , 2010 .

[113]  P. Southgate,et al.  The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae) , 2010, Molluscan Research.

[114]  K. Lotterhos,et al.  Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus , 2011 .

[115]  I. Auby,et al.  Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats , 1989 .

[116]  M. Thorndyke,et al.  Near-future levels of ocean acidificat ion reduce fert ilizat ion success in a sea urchin , 2018 .

[117]  H. Pörtner,et al.  Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica , 2012, Journal of Experimental Biology.

[118]  P. Schlegel,et al.  Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas , 2009 .

[119]  S. Comeau,et al.  Impact of aragonite saturation state changes on migratory pteropods , 2012, Proceedings of the Royal Society B: Biological Sciences.

[120]  Hugh L. MacIntyre,et al.  Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. role in sediment stability and shallow-water food webs , 1996 .

[121]  L. Chícharo,et al.  Seawater acidification by CO2 in a coastal lagoon environment: Effects on life history traits of juvenile mussels Mytilus galloprovincialis , 2012 .

[122]  J. Gattuso,et al.  Aquatic Calcification as a Source of Carbon Dioxide , 1995 .

[123]  V. Fabry,et al.  Aragonite and magnesian calcite fluxes to the deep Sargasso Sea , 1991 .

[124]  G. Nilsson,et al.  Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes , 2009 .

[125]  L. Finos,et al.  First Evidence of Immunomodulation in Bivalves under Seawater Acidification and Increased Temperature , 2012, PloS one.

[126]  J. Knutzen Effects of decreased pH on marine organisms , 1981 .

[127]  A. P. Wheeler Mechanisms of Molluscan Shell Formation , 2020 .

[128]  Michael C. Dove,et al.  IMPACTS OF ESTUARINE ACIDIFICATION ON SURVIVAL AND GROWTH OF SYDNEY ROCK OYSTERS SACCOSTREA GLOMERATA (GOULD 1850) , 2007 .

[129]  Steve Weiner,et al.  Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes , 2006 .

[130]  M. V. Nielsen The effect of temperature on the shell-length growth of juvenile Mytilus edulis L. , 1988 .

[131]  Adina Paytan,et al.  High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison , 2011, PloS one.

[132]  H. Pörtner,et al.  Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels (Mytilus galloprovincialis) , 2005 .

[133]  R. Bamber The effects of acidic sea water on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea) , 1987 .

[134]  V. Loosanoff,et al.  Effect of low pH upon rate of water pumping of oysters, Ostrea virginica. , 1947, The Anatomical record.

[135]  D. Bakker,et al.  Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification , 2012 .

[136]  C. Heip,et al.  Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis , 2010 .

[137]  B. Gaylord,et al.  Functional impacts of ocean acidification in an ecologically critical foundation species , 2011, Journal of Experimental Biology.

[138]  P. B. Duffy,et al.  Anthropogenic carbon and ocean pH , 2001 .

[139]  T. Waller Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linné , 1981 .

[140]  Frédéric Marin,et al.  Molluscan shell proteins , 2004 .

[141]  H. Kurihara,et al.  Effects of elevated pCO 2 on early development in the mussel Mytilus galloprovincialis , 2008 .

[142]  M. O'Donnell,et al.  Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas , 2013 .

[143]  Emma Ransome,et al.  Volcanic carbon dioxide vents show ecosystem effects of ocean acidification , 2008, Nature.

[144]  F. Joos,et al.  Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model , 2009 .

[145]  A. Eisenhauer,et al.  Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.) , 2013 .

[146]  C. Harley,et al.  Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana) , 2011 .

[147]  C. Heip,et al.  Impact of elevated CO2 on shellfish calcification , 2007 .

[148]  L. Eyster Shell inorganic composition and onset of shell mineralization during bivalve and gastropod embryogenesis , 1986 .

[149]  C. Peterson,et al.  Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development , 2006 .

[150]  Mark A. Green,et al.  Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves , 2009 .

[151]  N. Mieszkowska,et al.  Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities , 2011 .

[152]  P. Tyler,et al.  Early Larval Development of the Sydney Rock Oyster Saccostrea glomerata Under Near-Future Predictions of CO2-Driven Ocean Acidification , 2009 .

[153]  Steve Widdicombe,et al.  Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis , 2008 .

[154]  C. Gobler,et al.  Effects of CO2 and the harmful alga Aureococcus anophagefferens on growth and survival of oyster and scallop larvae , 2012 .

[155]  H. Pörtner,et al.  Adult exposure influences offspring response to ocean acidification in oysters , 2012 .

[156]  P. Rosenstiel,et al.  Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism , 2013 .

[157]  S. Dupont,et al.  What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? , 2010 .

[158]  A. Borges,et al.  Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification , 2010 .

[159]  K. Hiong,et al.  Light Induces an Increase in the pH of and a Decrease in the Ammonia Concentration in the Extrapallial Fluid of the Giant Clam Tridacna squamosa , 2006, Physiological and Biochemical Zoology.

[160]  A. Farrell,et al.  Physiology and Climate Change , 2008, Science.

[161]  O. Hoegh-Guldberg,et al.  Ocean acidification causes bleaching and productivity loss in coral reef builders , 2008, Proceedings of the National Academy of Sciences.

[162]  C. Gobler,et al.  The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica) , 2009 .

[163]  X. Álvarez‐Salgado,et al.  Physiological energetics of juvenile clams Ruditapes decussatus in a high CO 2 coastal ocean , 2011 .

[164]  C. Amsler,et al.  Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification , 2009, Antarctic Science.

[165]  P. Goulletquer,et al.  Decline of the Chesapeake Bay oyster population: a century of habitat destruction and overfishing , 1991 .

[166]  B. Seibel,et al.  Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance , 2003, Journal of Experimental Biology.

[167]  Kerim Aydin,et al.  Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales , 2005 .

[168]  Andrew R. Davis,et al.  Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla , 2010, PloS one.

[169]  D. Lowe,et al.  Effects of CO2-induced seawater acidification on the health of Mytilus edulis , 2008 .

[170]  K. Leung,et al.  Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. , 2008, Marine environmental research.

[171]  幸正 桑谷,et al.  アコヤガイの成長におるぼす飼育水の pH の影響について , 1969 .

[172]  M. Posey,et al.  Ecosystem services related to oyster restoration , 2007 .

[173]  M. Roberts,et al.  Benthic invertebrates in a high CO2 world , 2012 .

[174]  T. Baussant,et al.  Effects of Ocean Acidification on Early Life Stages of Shrimp (Pandalus borealis) and Mussel (Mytilus edulis) , 2011, Journal of toxicology and environmental health. Part A.

[175]  M. Byrne,et al.  Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean , 2011, Proceedings of the Royal Society B: Biological Sciences.

[176]  J. Beukema Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: I. The tellinid bivalve Macoma balthica , 1980 .

[177]  David L. Strayer,et al.  Mollusks as ecosystem engineers: the role of shell production in aquatic habitats , 2003 .

[178]  J. Witte,et al.  Intra- and interspecies comparison of energy flow in bivalve species in Dutch coastal waters by means of the Dynamic Energy Budget (DEB) theory , 2006 .

[179]  F. K. Mitchell,et al.  EFFECTS OF OCEAN , 2002 .

[180]  J. Blasco,et al.  Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum , 2010, Environmental science and pollution research international.

[181]  Mark A. Green,et al.  Biocalcification in the Eastern Oyster (Crassostrea virginica) in Relation to Long-term Trends in Chesapeake Bay pH , 2011 .

[182]  W. O'Connor,et al.  Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification , 2011 .

[183]  S. Comeau,et al.  Key Arctic pelagic mollusc (Limacina helicina) threatened by ocean acidification , 2009 .

[184]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[185]  G. Riedel,et al.  Shellfish Face Uncertain Future in High CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries , 2009, PloS one.

[186]  A. Ringwood,et al.  Water quality variation and clam growth: Is pH really a non-issue in estuaries? , 2002 .

[187]  G. Hofmann,et al.  Effect of pH on Gene Expression and Thermal Tolerance of Early Life History Stages of Red Abalone (Haliotis rufescens) , 2010 .

[188]  S. Comeau,et al.  Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina , 2012 .

[189]  Stephen V. Smith PRODUCTION OF CALCIUM CARBONATE ON THE MAINLAND SHELF OF SOUTHERN CALIFORNIA1 , 1972 .

[190]  Chun-jing Zou,et al.  Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland , 2013, Planta.

[191]  J. Spicer,et al.  Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea , 2007, Biology Letters.

[192]  A. Richardson,et al.  Comparison of the shell structure of two tropical Thecosomata (Creseis acicula and Diacavolinia longirostris) from 1963 to 2009: potential implications of declining aragonite saturation , 2012 .

[193]  D. Scott,et al.  A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities , 1995 .

[194]  R. Desrosiers,et al.  Early developmental events following fertilization in the giant scallop Placopecten magellanicus , 1996 .

[195]  Mark A. Green,et al.  Oyster Shell Dissolution Rates in Estuarine Waters: Effects of pH and Shell Legacy , 2011 .

[196]  Steve Weiner,et al.  Macromolecules in mollusc shells and their functions in biomineralization , 1984 .

[197]  H. Pörtner,et al.  Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus , 2009 .

[198]  E. Kniprath Ontogeny of the Molluscan Shell Field: a Review , 1981 .

[199]  V. Tunnicliffe,et al.  Survival of mussels in extremely acidic waters on a submarine volcano. , 2009 .

[200]  Patricia M. Dove,et al.  An Overview of Biomineralization Processes and the Problem of the Vital Effect , 2003 .

[201]  L. Peperzak,et al.  Mass mussel mortality in The Netherlands after a bloom of Phaeocystis globosa (prymnesiophyceae) , 2008 .

[202]  J. Burkholder,et al.  Emerging marine diseases--climate links and anthropogenic factors. , 1999, Science.

[203]  H. Kurihara Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates , 2008 .