Phase equilibria for associating Lennard-Jones fluids from theory and simulation

We present results of Gibbs ensemble simulations for phase equilibria of associating pure fluids and mixtures. Lennard-Jones spheres are used to account for repulsive and dispersive interactions, while anisotropic square well sites are used to account for bonding. We compare these simulation data with predictions of Wertheim's theory for associating fluids. The theory accurately predicts saturation densities and fractions of associated and nonassociated species, except near the critical point. For mixtures, the theory also accurately predicts bubble-point pressures and mole fractions. The theory can also be used to predict the properties of tangent diatomic Lennard-Jones molecules.

[1]  J. Zollweg,et al.  Isothermal vapor-liquid equilibrium for dimethyl ether + sulfur dioxide , 1991 .

[2]  G. Jackson,et al.  Theory and computer simulations of heteronuclear diatomic hard-sphere molecules (hard dumbbells) , 1991 .

[3]  I. Nezbeda,et al.  Analytical solution of Wertheim's OZ equation for the Smith-Nezbeda model of associated liquids , 1991 .

[4]  George Stell,et al.  Sticky spheres and related systems , 1991 .

[5]  J. Kolafa,et al.  Primitive models of associated liquids: Equation of state, liquid-gas phase transition, and percolation threshold , 1991 .

[6]  J. Rasaiah,et al.  Unsymmetrical electrolytes with adhesive interactions , 1991 .

[7]  G. Stell,et al.  Strong short‐range attractions in a fluid , 1990 .

[8]  Walter G Chapman Prediction of the thermodynamic properties of associating Lennard‐Jones fluids: Theory and simulation , 1990 .

[9]  K. Gubbins,et al.  Hydrogen bonding in liquid methanol , 1990 .

[10]  J. Rasaiah,et al.  Cavity functions and association in models for weak electrolytes and sticky hard spheres , 1990 .

[11]  D. Bratko,et al.  A general solution of the molecular Ornstein–Zernike equation for spheres with anisotropic adhesion and electric multipoles , 1990 .

[12]  J. Kolafa,et al.  On perturbation expansions for associated fluids , 1990 .

[13]  D. Frenkel,et al.  Computer simulations in the Gibbs ensemble , 1989 .

[14]  Yaoqi Zhou,et al.  Chemical association in simple models of molecular and ionic fluids , 1989 .

[15]  G. Iglesias-Silva,et al.  Primitive model of water , 1989 .

[16]  K. Gubbins,et al.  Phase equilibria of associating fluids : spherical molecules with multiple bonding sites , 1988 .

[17]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[18]  M. Wertheim Integral equation for the Smith–Nezbeda model of associated fluids , 1988 .

[19]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[20]  K. Gubbins,et al.  Theory and simulation of associating liquid mixtures. II , 1987 .

[21]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[22]  J. Kolafa,et al.  Monte Carlo simulations on primitive models of water and methanol , 1987 .

[23]  K. Gubbins,et al.  Mixtures of polar and associating molecules , 1987 .

[24]  M. Wertheim Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres , 1986 .

[25]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[26]  P. Cummings,et al.  Analytic solution of the molecular Ornstein–Zernike equation for nonspherical molecules. Spheres with anisotropic surface adhesion , 1986 .

[27]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[28]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[29]  William R. Smith,et al.  A simple model for associated fluids , 1984 .

[30]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[31]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[32]  P. Cummings,et al.  Statistical mechanical models of chemical reactions: Analytic solution of models ofA+B⇌ABin the Percus-Yevick approximation , 1984 .

[33]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[34]  G. Patey,et al.  Theoretical results for aqueous electrolytes. Ion–ion potentials of mean force and the solute‐dependent dielectric constant , 1983 .

[35]  H. C. Andersen,et al.  A theory of the anomalous thermodynamic properties of liquid water , 1983 .

[36]  H. C. Andersen,et al.  Cluster expansions for hydrogen‐bonded fluids. III. Water , 1983 .

[37]  J. G. Powles,et al.  The thermodynamics of symmetric two centre Lennard-Jones liquids , 1982 .

[38]  D. Chan,et al.  The statistical mechanics of ion-dipole-tetrahedral quadrupole mixtures , 1981 .

[39]  K. Olaussen,et al.  Statistical mechanical model with chemical reaction , 1980 .

[40]  S. Goldman An explicit equation for the radial distribution function of a dense Lennard-Jones fluid , 1979 .

[41]  D. J. Tildesley,et al.  Equation of state for the Lennard-Jones fluid , 1979 .

[42]  H. C. Andersen Cluster expansions for hydrogen‐bonded fluids. I. Molecular association in dilute gases , 1973 .

[43]  D. Henderson,et al.  Distribution functions of multi-component fluid mixtures of hard spheres , 1972 .

[44]  L. Verlet,et al.  Equilibrium Theory of Simple Liquids , 1972 .

[45]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[46]  D. Frenkel,et al.  UvA-DARE ( Digital Academic Repository ) Calculation of the chemical potential in the Gibbs ensemble , 2006 .

[47]  A. Panagiotopoulos,et al.  How good is conformal solutions theory for phase equilibrium predictions?: Gibbs ensemble simulations of binary Lennard-Jones mixtures , 1991 .

[48]  G. Stell,et al.  New microscopic approach to the statistical mechanics of chemical association , 1991 .

[49]  J. Kolafa,et al.  Primitive model of water: II. Theoretical results for the structure and thermodynamic properties , 1989 .

[50]  J. Kolafa,et al.  Implementation of the Dahl-Andersen-Wertheim theory for realistic water-water potentials , 1989 .

[51]  Koichiro Nakanishi,et al.  Generalized equation of state for Lennard-Jones fluids—I. Pure fluids and simple mixtures , 1988 .

[52]  G. Habermehl,et al.  ReviewPure appl. Chem: Rinehart, K. L., et al. Marine natural products as sources of antiviral, antimicrobial, and antineoplastic Agents. 53, 795 (1981). (K. L. Rinehart, University of Illinois, Urbana, IL 61801, U.S.A.) , 1983 .

[53]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .