Asteroid Interiors and Morphology

The past decade has seen an astonishing array of advances across a wide spectrum of important inputs to the problem and mystery of asteroid interiors. These include the development of a large database concerning asteroid component strengths, as evidenced by meteors and meteorites (section 2); the compilation of extensive densities and inferred porosities for asteroids based on groundbased observations (section 3); the development of new computational techniques for the simulation of how asteroid rubble piles deform and fission or shed mass when subject to extreme rotation rates (section 4); and the development of crucial insights into the unique geophysics of specific asteroidal bodies (section 6). This chapter will review these different areas of advancements in an attempt to unify these disparate topics and show where future progress can be made in this field. Knowledge about asteroid interiors is a crucial aspect for understanding these bodies, as it provides clues about their evolutionary history, in turn providing strong constraints on the history of the solar system. Unlike asteroid surfaces, it is impossible to peer directly within or easily take a sample measurement from within a body. Thus the study of asteroid interiors must rely on a combination of measurement and theory to develop constraints on the interior environment. Given these restrictions, previous investigations have studied observable characteristics that may be related to the nature of their interiors. This being said, there are measurement techniques that can probe the interior properties of bodies, in particular through seismic and radar sounding measurements. These are discussed in section 5 and represent a potential source for future advancements in this field. The most accessible features of an asteroid that are related to their interior structure are the mass, density, shape, and spin. These are strongly constrained by the interior structure, and by the strength and mechanical properties of that structure. By focusing on these specific observables, we can start to answer basic questions about these bodies: How strong are they? What is the nature of that strength? Are the interiors rubble piles full of voids at various size scales, or are they solid coherent structures? How do these properties depend on composition, shape, spin, size, or location? Important steps in answering the above questions have occurred since the publication of the Asteroids III volume

[1]  D. Scheeres,et al.  Scaling forces to asteroid surfaces: The role of cohesion , 2010, 1002.2478.

[2]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[3]  B. Macomber,et al.  Triplicity and physical characteristics of Asteroid (216) Kleopatra , 2010, 1011.5263.

[4]  Alan W. Iarris Tumbling Asteroids , 1997 .

[5]  P. Thomas,et al.  Impact History of Eros: Craters and Boulders , 2002 .

[6]  A. Dobrovolskis,et al.  Internal stresses in phobos and other triaxial bodies , 1982 .

[7]  P. Michel,et al.  Spin-up of rubble-pile asteroids: Disruption, satellite formation, and equilibrium shapes , 2012 .

[8]  S. Ostro,et al.  Dynamical Configuration of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[9]  Larry Denneau,et al.  The Thousand Asteroid Light Curve Survey , 2009, 0906.3339.

[10]  J. Miller,et al.  A Global Solution for the Gravity Field, Rotation, Landmarks, and Ephemeris of Eros , 2002 .

[11]  Zeljko Ivezic,et al.  The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4 , 2008, 0807.3762.

[12]  Rubble-Pile Reshaping Reproduces Overall Asteroid Shapes , 2009 .

[13]  C. Blitz Modélidation de la propagation des ondes sismiques et des ejecta dans les astéroïdes: application à l'érosion des cratères de l'astéroïde 433-Eros , 2009 .

[14]  K. Holsapple Equilibrium figures of spinning bodies with self-gravity , 2004 .

[15]  M. Kaasalainen,et al.  The shape and rotation of asteroid 2008 TC3 , 2010 .

[16]  Daniel J. Scheeres,et al.  Stability in the Full Two-Body Problem , 2002 .

[17]  D. Scheeres,et al.  Estimating asteroid density distributions from shape and gravity information , 2000 .

[18]  Joseph A. Burns,et al.  Approximate Equilibrium Shapes for Spinning, Gravitating Rubble Asteroids , 2007 .

[19]  James G. Williams,et al.  Tidal torques: a critical review of some techniques , 2008, 0803.3299.

[20]  S. Murchie,et al.  The geology of 433 Eros , 2002 .

[21]  Daniel J. Scheeres,et al.  DEM simulation of rotation-induced reshaping and disruption of rubble-pile asteroids , 2012 .

[22]  G. J. Consolmagnoa,et al.  The significance of meteorite density and porosity , 2010 .

[23]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[24]  F. Marzari,et al.  Abrupt alteration of Asteroid 2004 MN4's spin state during its 2029 Earth flyby , 2005 .

[25]  Vincenzo Zappala,et al.  Asteroid Family Identification , 2002 .

[26]  Kentaro Uesugi,et al.  Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith , 2011, Science.

[27]  Roland Martin,et al.  Simulation of Seismic Wave Propagation in an Asteroid Based upon an Unstructured MPI Spectral-Element Method: Blocking and Non-blocking Communication Strategies , 2008, VECPAR.

[28]  Daniel J. Scheeres,et al.  LONG-TERM STABLE EQUILIBRIA FOR SYNCHRONOUS BINARY ASTEROIDS , 2011, The Astrophysical Journal.

[29]  Derek C. Richardson,et al.  Numerical experiments with rubble piles: equilibrium shapes and spins , 2005 .

[30]  E. Asphaug,et al.  DECONSTRUCTING CASTALIA : EVALUATING A POSTIMPACT STATE , 1999 .

[31]  D. Minton The topographic limits of gravitationally bound, rotating sand piles , 2008 .

[32]  Y. Tsuda,et al.  System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3 , 2013 .

[33]  D. Revelle,et al.  An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records , 2002 .

[34]  A. Harris,et al.  On the shapes and spins of “rubble pile” asteroids , 2009 .

[35]  T. Statler,et al.  Extreme sensitivity of the YORP effect to small-scale topography , 2009, 0903.1119.

[36]  Daniel J. Scheeres,et al.  Rotational fission of contact binary asteroids , 2007 .

[37]  R. Nakamura,et al.  The effect of YORP on Itokawa , 2007 .

[38]  Daniel J. Scheeres,et al.  Morphology driven density distribution estimation for small bodies , 2014 .

[39]  R. Landis,et al.  AIDA: The Asteroid Impact & Deflection Assessment Mission , 2013 .

[40]  P. Thomas,et al.  Seismic resurfacing by a single impact on the asteroid 433 Eros , 2005, Nature.

[41]  Daniel J. Scheeres,et al.  The strength of regolith and rubble pile asteroids , 2013, 1306.1622.

[42]  S. Ostro,et al.  Effects of Gravitational Interactions on Asteroid Spin States , 2000 .

[43]  D. Scheeres Landslides and Mass shedding on spinning spheroidal asteroids , 2014, 1409.4015.

[44]  Dean L. Mensa,et al.  Radar imaging , 1992, Int. J. Imaging Syst. Technol..

[45]  K. T. Ramesh,et al.  The dynamic strength of an ordinary chondrite , 2011 .

[46]  J. Richardson,et al.  Investigating the combined effects of shape, density, and rotation on small body surface slopes and erosion rates , 2014 .

[47]  D. Scheeres Minimum energy asteroid reconfigurations and catastrophic disruptions , 2009 .

[48]  H. Poincaré Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation , 1885, Bulletin astronomique.

[49]  William M. Folkner,et al.  A new approach to determining asteroid masses from planetary range measurements , 2013 .

[50]  O. Barnouin,et al.  Block distributions on Itokawa , 2014 .

[51]  J. Miller,et al.  Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros , 2002 .

[52]  D. Scheeres,et al.  Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems , 2011, 1111.4245.

[53]  D. Jewitt,et al.  THE EXTRAORDINARY MULTI-TAILED MAIN-BELT COMET P/2013 P5 , 2013, 1311.1483.

[54]  Takahide Mizuno,et al.  Mass and Local Topography Measurements of Itokawa by Hayabusa , 2006, Science.

[55]  Z. Charvát,et al.  Meteosat observation of the atmospheric entry of 2008 TC3 over Sudan and the associated dust cloud , 2009 .

[56]  Kazuya Yoshida,et al.  Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa , 2006, Science.

[57]  The YORP effect on 25 143 Itokawa , 2009 .

[58]  Pavel Spurný,et al.  The trajectory, structure and origin of the Chelyabinsk asteroidal impactor , 2013, Nature.

[59]  P. Pravec,et al.  Asteroid rotation excitation by subcatastrophic impacts , 2013, 1304.7083.

[60]  D. Scheeres,et al.  Energy and Stress Distributions in Ellipsoids , 2002 .

[61]  Jing Li,et al.  DISINTEGRATING ASTEROID P/2013 R3 , 2014, The Astrophysical Journal.

[62]  Hermann Böhnhardt,et al.  MarcoPolo-R near earth asteroid sample return mission , 2011, Proceedings of the International Astronomical Union.

[63]  T. B. Spahr,et al.  MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS , 2011, 1109.4096.

[64]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[65]  Subrahmanyan Chandrasekhar,et al.  Ellipsoidal Figures of Equilibrium , 1969 .

[66]  David Vokrouhlický,et al.  PAIRS OF ASTEROIDS PROBABLY OF A COMMON ORIGIN , 2008 .

[67]  A. Fienga,et al.  INPOP06: a new numerical planetary ephemeris , 2008 .

[68]  S. Love,et al.  Tidal Distortion and Disruption of Earth-Crossing Asteroids , 1997 .

[69]  Daniel J. Scheeres,et al.  Stability of the planar full 2-body problem , 2009 .

[70]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[71]  Re'em Sari,et al.  TIDAL EVOLUTION OF RUBBLE PILES , 2007, 0712.0446.

[72]  D. Scheeres,et al.  Effect of density inhomogeneity on YORP: The case of Itokawa , 2008, 0805.2168.

[73]  J. Enriquez,et al.  Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations , 2012, 1604.05384.

[74]  B. Rozitis,et al.  Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA , 2014, Nature.

[75]  S. N. Milam,et al.  The impact and recovery of asteroid 2008 TC3 , 2009, Nature.

[76]  Keith A. Holsapple,et al.  Equilibrium Configurations of Solid Cohesionless Bodies , 2001 .

[77]  A. V. Sergeev,et al.  Formation of asteroid pairs by rotational fission , 2010, Nature.

[78]  Joseph A. Burns,et al.  Asteroid Nutation Angles , 1973 .

[79]  R. Laher,et al.  A NEW LARGE SUPER-FAST ROTATOR: (335433) 2005 UW163 , 2014, 1407.8264.

[80]  Daniel J. Scheeres,et al.  STRESS AND FAILURE ANALYSIS OF RAPIDLY ROTATING ASTEROID (29075) 1950 DA , 2014, 1411.5926.

[81]  F. Marzari,et al.  Combined effect of YORP and collisions on the rotation rate of small Main Belt asteroids , 2011 .

[82]  A. Fitzsimmons,et al.  The internal structure of asteroid (25143) Itokawa as revealed by detection of YORP spin-up , 2014 .

[83]  N. Moskovitz,et al.  Observations of “fresh” and weathered surfaces on asteroid pairs and their implications on the rotational-fission mechanism , 2014, 1401.4465.

[84]  A. Nakamura,et al.  Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa , 2008 .

[85]  U. S. Naval Asteroid Masses and Densities , 2002 .

[86]  F. Mignard,et al.  Asteroid masses and improvement with Gaia , 2007 .

[87]  J. Borovička,et al.  The Carancas meteorite impact – Encounter with a monolithic meteoroid , 2008 .

[88]  D. Souami,et al.  A multidomain approach to asteroid families’ identification , 2013, 1305.4847.

[89]  C. Jacobi Ueber die Figur des Gleichgewichts , 1834 .

[90]  D. Scheeres,et al.  SIMULATING ASTEROID RUBBLE PILES WITH A SELF-GRAVITATING SOFT-SPHERE DISTINCT ELEMENT METHOD MODEL , 2011 .

[91]  E. Asphaug Critical crater diameter and asteroid impact seismology , 2008 .

[92]  D. Campbell,et al.  Binary Asteroids in the Near-Earth Object Population , 2002, Science.

[93]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[94]  D. Scheeres,et al.  Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems , 2011, 1404.0801.

[95]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[96]  P. Michel,et al.  Rotational breakup as the origin of small binary asteroids , 2008, Nature.

[97]  I. Sharma Structural stability of rubble-pile asteroids , 2013 .

[98]  L. Prockter,et al.  433 Eros lineaments: Global mapping and analysis , 2008 .

[99]  D. Richardson,et al.  Binary near-Earth asteroid formation: Rubble pile model of tidal disruptions , 2005 .

[100]  K. Holsapple On YORP-induced spin deformations of asteroids , 2010 .

[101]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[102]  Jean Manfroid,et al.  The tumbling spin state of (99942) Apophis , 2014 .

[103]  E. Goffin Astrometric asteroid masses: a simultaneous determination , 2014, 1402.4241.

[104]  S. Ostro,et al.  Radar observations of asteroid 216 kleopatra , 2000, Science.

[105]  K. Holsapple,et al.  Compaction as the origin of the unusual craters on the asteroid Mathilde , 1999, Nature.

[106]  Daniel J. Scheeres,et al.  Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[107]  P. Tanga,et al.  COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT , 2014, 1411.1114.

[108]  Richard Greenberg,et al.  Impact-Induced Seismic Activity on Asteroid 433 Eros: A Surface Modification Process , 2004, Science.

[109]  T. Hirabayashi Structural Stability of Asteroids , 2014 .

[110]  S. W. Asmar,et al.  Asteroid 21 Lutetia: Low Mass, High Density , 2011, Science.

[111]  Erik Asphaug,et al.  Asteroid Interiors , 2002 .

[112]  J. Veverka,et al.  Surface Expressions of Structural Features on Eros , 2002 .

[113]  Daniel J. Scheeres,et al.  Physical modeling of near-Earth Asteroid (29075) 1950 DA , 2007 .

[114]  D. Britt,et al.  Internal structure and physical properties of the Asteroid 2008 TC3 inferred from a study of the Almahata Sitta meteorites , 2011 .

[115]  D. J. Scheeresa,et al.  Abrupt alteration of Asteroid 2004 MN 4 ’ s spin state during its 2029 Earth flyby , 2005 .

[116]  D. Scheeres,et al.  CONSTRAINTS ON THE PHYSICAL PROPERTIES OF MAIN BELT COMET P/2013 R3 FROM ITS BREAKUP EVENT , 2014, 1406.0804.

[117]  A. Harris,et al.  Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations , 2009, 0908.4198.

[118]  Daniel J. Scheeres,et al.  High-resolution model of Asteroid 4179 Toutatis , 2003 .

[119]  J. Burns,et al.  Nutational damping times in solids of revolution , 2001 .

[120]  Jon Kadish,et al.  Stresses in accreted planetary bodies , 2008 .

[121]  K. Holsapple Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61 , 2007 .

[122]  Alan W. Harris,et al.  The Rotation Rates of Very Small Asteroids: Evidence for Rubble-Pile Structure , 1996 .

[123]  S. Abe,et al.  FAST ROTATION OF A SUBKILOMETER-SIZED NEAR-EARTH OBJECT 2011 XA3 , 2014, 1403.6680.

[124]  J. Borovička,et al.  Very low strengths of interplanetary meteoroids and small asteroids , 2011 .

[125]  P. D. Washabaugh,et al.  Stresses in rotating spheres grown by accretion , 2005 .

[126]  R. Wainscoat,et al.  Continued activity in P/2013 P5 PANSTARRS - Unexpected comet, rotational break-up, or rubbing binary asteroid? , 2014 .

[127]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[128]  D. Scheeres,et al.  ANALYSIS OF ASTEROID (216) KLEOPATRA USING DYNAMICAL AND STRUCTURAL CONSTRAINTS , 2013, 1312.4976.

[129]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.

[130]  H. Melosh,et al.  Gravitational Aggregates: Evidence and Evolution , 2002 .

[131]  H. Melosh,et al.  Impacts on Asteroids: Fragmentation, Regolith Transport, and Disruption , 2001 .

[132]  D. Vokrouhlický,et al.  Generalized YORP evolution: Onset of tumbling and new asymptotic states , 2007 .

[133]  The binary near-Earth asteroid ( 175706 ) 1996 FG 3 — An observational constraint on its orbital stability , 2014 .

[134]  D. Scheeres,et al.  Seismology on a small body: expected results for the BASiX Discovery Mission proposal , 2010 .