A passively mode-locked of Tm:YAP laser with a zeolitic imidazolate frameworks-8 (ZIF-8) saturable absorber

[1]  Zhiyi Wei,et al.  Bi4Br4-based saturable absorber with robustness at high power for ultrafast photonic device , 2022, Applied Physics Letters.

[2]  Z. Hui,et al.  Ternary Transition Metal Dichalcogenides for High Power Vector Dissipative Soliton Ultrafast Fiber Laser , 2021, Laser & Photonics Reviews.

[3]  Ju H. Lee,et al.  Passive mode-locking by a Ti2AlN saturable absorber in 1.5 μm region , 2021, Optik.

[4]  S. Harun,et al.  Ti3AlC2 MAX phase thin film as saturable absorber for generating soliton mode-locked fiber laser , 2021 .

[5]  Shengzhi Zhao,et al.  Broadband optical nonlinearity of zeolitic imidazolate framework-8 (ZIF-8) for ultrafast photonics , 2021 .

[6]  Wenjun Liu,et al.  Ultrafast Photonics of Ternary RexNb(1-x)S2 in Fiber Lasers. , 2021, ACS applied materials & interfaces.

[7]  Wenjun Liu,et al.  WxNb(1-x)Se2 nanosheets for ultrafast photonics. , 2021, Nanoscale.

[8]  Jing Wang,et al.  High signal-noise ratio passively mode-locked femtosecond Yb: CaF2 laser at 1034 nm , 2021 .

[9]  Su Chen,et al.  MOF-Based Photonic Crystal Film towards Separation of Organic Dyes. , 2019, ACS applied materials & interfaces.

[10]  S. Tanaka,et al.  A Simple Step toward Enhancing Hydrothermal Stability of ZIF-8 , 2019, ACS omega.

[11]  Song Yang Generation of high-energy and low-repetition rate hybrid pulses from a passively mode-locked Tm-Ho co-doped laser , 2019, Optik.

[12]  Jingliang He,et al.  Ternary chalcogenide Ta2NiS5 as a saturable absorber for a 1.9  μm passively Q-switched bulk laser. , 2019, Optics letters.

[13]  Wei Zhang,et al.  A MoS2-graphene heterojunction as saturable absorber for passively Q-switched mode-locked Nd:GGG laser , 2018, Optik.

[14]  Zhihua Yang,et al.  Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials , 2018, Nature Communications.

[15]  Zhihua Yang,et al.  SrB5 O7 F3 Functionalized with [B5 O9 F3 ]6- Chromophores: Accelerating the Rational Design of Deep-Ultraviolet Nonlinear Optical Materials. , 2018, Angewandte Chemie.

[16]  L. T. Thanh LeTrungThanh Optical Biosensors Based on Multimode Interference and Microring Resonator Structures , 2018 .

[17]  Zhihua Yang,et al.  Cation-Tuned Synthesis of Fluorooxoborates: Towards Optimal Deep-Ultraviolet Nonlinear Optical Materials. , 2018, Angewandte Chemie.

[18]  Zhihua Yang,et al.  CsB4 O6 F: A Congruent-Melting Deep-Ultraviolet Nonlinear Optical Material by Combining Superior Functional Units. , 2017, Angewandte Chemie.

[19]  K. Poeppelmeier,et al.  Finding the Next Deep-Ultraviolet Nonlinear Optical Material: NH4B4O6F. , 2017, Journal of the American Chemical Society.

[20]  A. Z. Zulkifli,et al.  Aluminized Film as Saturable Absorber for Generating Passive Q-Switched Pulses in the Two-Micron Region , 2017, Journal of Lightwave Technology.

[21]  J. Mannhart,et al.  ZIF-8 Films Prepared by Femtosecond Pulsed-Laser Deposition , 2017 .

[22]  Zhihua Yang,et al.  Fluorooxoborates: Beryllium-Free Deep-Ultraviolet Nonlinear Optical Materials without Layered Growth. , 2017, Angewandte Chemie.

[23]  Zhiyi Wei,et al.  Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. , 2017, Optics express.

[24]  T. Verbiest,et al.  ZIF-8 as Nonlinear Optical Material: Influence of Structure and Synthesis , 2016 .

[25]  S. W. Harun,et al.  C-Band Q-Switched Fiber Laser Using Titanium Dioxide (TiO 2) As Saturable Absorber , 2016, IEEE Photonics Journal.

[26]  S. V. D. Perre,et al.  Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF , 2015 .

[27]  P. Silva,et al.  Multifunctional metal-organic frameworks: from academia to industrial applications. , 2015, Chemical Society reviews.

[28]  Weisheng Hu,et al.  Mode-locked thulium fiber laser with MoS2 , 2015 .

[29]  Zhipei Sun,et al.  Nanotube and graphene saturable absorbers for fibre lasers , 2013, Nature Photonics.

[30]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[31]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[32]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[33]  Nathaniel M Fried,et al.  Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110‐watt Thulium fiber laser at 1.94 µm , 2005, Lasers in surgery and medicine.

[34]  Kaoru Minoshima,et al.  Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. , 2002, Optics express.

[35]  Wenbin Lin,et al.  Crystal engineering of NLO materials based on metal--organic coordination networks. , 2002, Accounts of chemical research.

[36]  J G Fujimoto,et al.  Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. , 2001, Optics letters.

[37]  J G Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. , 1995, Optics letters.

[38]  J. Fujimoto,et al.  Femtosecond optical ranging in biological systems. , 1986, Optics letters.