Predicting Product Purchase from Inferred Customer Similarity: An Autologistic Model Approach

Product recommendation models are key tools in customer relationship management (CRM). This study develops a product recommendation model based on the principle that customer preference similarity stemming from prior purchase behavior is a key element in predicting current product purchase. The proposed recommendation model is dependent on two complementary methodologies: joint space mapping (placing customers and products on the same psychological map) and spatial choice modeling (allowing observed choices to be correlated across customers). Using a joint space map based on past purchase behavior, a predictive model is calibrated in which the probability of product purchase depends on the customer's relative distance to other customers on the map. An empirical study demonstrates that the proposed approach provides excellent forecasts relative to benchmark models for a customer database provided by an insurance firm.

[1]  Michel Wedel,et al.  Cross-Selling Through Database Marketing: A Mixed Data Factor Analyzer for Data Augmentation and Prediction , 2003 .

[2]  Michael D. Ward,et al.  Location, Location, Location: An MCMC Approach to Modeling the Spatial Context of War and Peace , 2002, Political Analysis.

[3]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[4]  Dan Ariely,et al.  Learning by Collaborative and Individual-Based Recommendation Agents , 2004 .

[5]  R. Srivastava,et al.  Applying Latent Trait Analysis in the Evaluation of Prospects For Cross-Selling of Financial Services , 1991 .

[6]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[7]  Robert Haining,et al.  Spatial data analysis , 2003 .

[8]  Enrique Castillo,et al.  Conditionally Specified Distributions , 1992 .

[9]  Timothy C. Coburn,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2007 .

[10]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[11]  J PazzaniMichael A Framework for Collaborative, Content-Based and Demographic Filtering , 1999 .

[12]  Peter E. Rossi,et al.  The Value of Purchase History Data in Target Marketing , 1996 .

[13]  Filippo Menczer,et al.  Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms , 2005, Manag. Sci..

[14]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[15]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[16]  Tom Wansbeek,et al.  Interdependent preferences: An econometric analysis , 1997 .

[17]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[18]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[19]  Subhash R. Lele,et al.  Jackknifing Linear Estimating Equations: Asymptotic Theory and Applications in Stochastic Processes , 1991 .

[20]  Bart J. Bronnenberg,et al.  Using Multimarket Data to Predict Brand Performance in Markets for Which No or Poor Data Exist , 2002 .

[21]  Carol A. Gotway,et al.  Spatial Data Analysis in the Social and Environmental , 1992 .

[22]  Russell S. Winer,et al.  A Panel-Data Based Method for Merging Joint Space and Market Response Function Estimation , 1987 .

[23]  Greg M. Allenby,et al.  Modeling Interdependent Consumer Preferences , 2003 .

[24]  R. Haining Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[25]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[26]  Andrew D. Gershoff,et al.  Using a Community of Knowledge to Build Intelligent Agents , 1998 .

[27]  B. Arnold,et al.  Conditionally Specified Distributions: An Introduction (with comments and a rejoinder by the authors) , 2001 .

[28]  Joel Levine Joint-space analysis of “pick-any” data: Analysis of choices from an unconstrained set of alternatives , 1979 .

[29]  Hon-Kwong Lui,et al.  Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming , 2006, Manag. Sci..

[30]  R. Eugene Klippel,et al.  A Comparison of Four Multi-Attribute Models in the Prediction of Consumer Attitudes , 1975 .

[31]  Thomas S. Gruca,et al.  Sibling brands, multiple objectives, and response to entry: The case of the marion retail coffee market , 2002 .

[32]  Rick L. Andrews,et al.  Hierarchical Bayes versus Finite Mixture Conjoint Analysis Models: A Comparison of Fit, Prediction, and Partworth Recovery , 2002 .

[33]  Carl F. Mela,et al.  E-Customization , 2003 .

[34]  Benjamin Van Roy,et al.  Manipulation Robustness of Collaborative Filtering Systems , 2009, ArXiv.

[35]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[36]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[37]  Dawn Iacobucci,et al.  Recommendation agents on the internet , 2000 .

[38]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[39]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[40]  R. Fildes Journal of the Royal Statistical Society (B): Gary K. Grunwald, Adrian E. Raftery and Peter Guttorp, 1993, “Time series of continuous proportions”, 55, 103–116.☆ , 1993 .

[41]  Myoung-jae Lee,et al.  Methods of moments and semiparametric econometrics for limited dependent variable models , 1996 .

[42]  Anand V. Bodapati Recommendation Systems with Purchase Data , 2008 .

[43]  D. Cox The Analysis of Multivariate Binary Data , 1972 .

[44]  Gary J. Russell,et al.  Analysis of cross category dependence in market basket selection , 2000 .

[45]  Alex M. Andrew Neural and Intelligent Systems Integration , 1998 .

[46]  D. J. Strauss,et al.  Pseudolikelihood Estimation for Social Networks , 1990 .

[47]  R. Kohli,et al.  Internet Recommendation Systems , 2000 .

[48]  Michael R. Solomon,et al.  A role-theoretic approach to product symbolism: Mapping a consumption constellation , 1991 .

[49]  Russell S. Winer,et al.  Constructing Joint Spaces from Pick-Any Data: A New Tool for Consumer Analysis , 1982 .

[50]  Vijay Mahajan,et al.  Unobserved Retailer Behavior in Multimarket Data: Joint Spatial Dependence in Market Shares and Promotion Variables , 2001 .

[51]  B. Arnold,et al.  Conditionally specified distributions: an introduction , 2001 .

[52]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[53]  Gerda Claeskens,et al.  Bootstrapping Pseudolikelihood Models for Clustered Binary Data , 1999 .

[54]  P. T. Joseph E-Commerce , 2004 .

[55]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[56]  P. McCullagh,et al.  Generalized Linear Models , 1992 .