Fundamentals of liquid metal displacement reactions: EMF measurements of Na-Sn, Li-Sn, Mg-Sn, and Ca-Sn

[1]  Jong‐Sung Yu,et al.  Magnesium: properties and rich chemistry for new material synthesis and energy applications. , 2023, Chemical Society reviews.

[2]  Huayi Yin,et al.  An iron-base oxygen-evolution electrode for high-temperature electrolyzers , 2023, Nature Communications.

[3]  Xiang Chen,et al.  Anode electrolysis of sulfides , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Hongmin Zhu,et al.  A solid-state electrolysis process for upcycling aluminium scrap , 2022, Nature.

[5]  Yixiang Shi,et al.  Modeling the mass transfer and phase transition of Sn-Sb positive electrode in a liquid metal battery , 2022, Journal of Electroanalytical Chemistry.

[6]  Hojong Kim,et al.  Thermodynamic properties of Gd-Bi alloys determined by emf measurements in LiCl-KCl-GdCl3 electrolyte , 2021 .

[7]  Zi-kui Liu,et al.  Thermodynamic properties of the Nd-Bi system via emf measurements, DFT calculations, machine learning, and CALPHAD modeling , 2021, Acta Materialia.

[8]  Kui Liu,et al.  In-situ anodic precipitation process for highly efficient separation of aluminum alloys , 2021, Nature Communications.

[9]  H. Dai,et al.  Rechargeable Na/Cl2 and Li/Cl2 batteries , 2021, Nature.

[10]  T. Okabe,et al.  Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode , 2021 .

[11]  Tian Yang,et al.  Comparative evaluation of energy and resource consumption for vacuum carbothermal reduction and Pidgeon process used in magnesium production , 2020 .

[12]  Hojong Kim,et al.  Thermodynamic properties of rare‐earth alloys by electrochemical emf measurements , 2020, Journal of Materials Research.

[13]  Yang Jin,et al.  High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte , 2020, Nature Sustainability.

[14]  Hojong Kim,et al.  Thermodynamic properties of Ca–Pb electrodes determined by electromotive force measurements , 2020 .

[15]  E. Yu,et al.  Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications , 2019, Nature Communications.

[16]  H. Luo,et al.  Thermodynamic calculation of calcium metal prepared by vacuum aluminothermic reduction method , 2019, IOP Conference Series: Materials Science and Engineering.

[17]  D. Sadoway,et al.  Faradaically selective membrane for liquid metal displacement batteries , 2018 .

[18]  Hojong Kim,et al.  Thermodynamic Properties of Strontium-Lead Alloys Determined By Electromotive Force Measurements , 2017 .

[19]  Brian L. Spatocco,et al.  Thermodynamic properties of calcium-magnesium alloys determined by emf measurements , 2017 .

[20]  Hojong Kim,et al.  Thermodynamic Properties of Strontium-Bismuth Alloys Determined by Electromotive Force Measurements , 2017 .

[21]  Brian L. Spatocco,et al.  Calcium-based multi-element chemistry for grid-scale electrochemical energy storage , 2016, Nature Communications.

[22]  Yusheng Yang,et al.  Electrochemical extraction and separation of praseodymium and erbium on reactive magnesium electrode in molten salts , 2015, Journal of Solid State Electrochemistry.

[23]  Donald R. Sadoway,et al.  Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.

[24]  Y. Zaikov,et al.  Calcium Production by the Electrolysis of Molten CaCl2—Part I. Interaction of Calcium and Copper-Calcium Alloy with Electrolyte , 2014, Metallurgical and Materials Transactions B.

[25]  D. Sadoway,et al.  A new anode material for oxygen evolution in molten oxide electrolysis , 2013, Nature.

[26]  K. M. Haneefa,et al.  Review of concrete performance at elevated temperature and hot sodium exposure applications in nuclear industry , 2013 .

[27]  Brian L. Spatocco,et al.  Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.

[28]  Jonathan M Cullen,et al.  Mapping the global flow of aluminum: from liquid aluminum to end-use goods. , 2013, Environmental science & technology.

[29]  Brian L. Spatocco,et al.  Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys , 2012 .

[30]  S. Jiao,et al.  Novel metallurgical process for titanium production , 2006 .

[31]  A. Palenzona,et al.  Phase diagram of the Ca–Sn system , 2000 .

[32]  Derek J. Fray,et al.  Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride , 2000, Nature.

[33]  W. Gasior,et al.  Thermodynamic studies and the phase diagram of the Li-Sn system , 1996 .

[34]  A. Fürstner Chemistry of and with Highly Reactive Metals , 1993 .

[35]  A. A. Nayeb-Hashemi,et al.  The Mg−Sn (Magnesium-Tin) system , 1984 .

[36]  A. Pelton,et al.  Thermodynamic Properties of Liquid Na‐Sn Alloys by emf Measurements with Beta‐Alumina Electrolytes , 1978 .

[37]  Ram A. Sharma Thermodynamic properties of liquid Mg+Pb and Mg+Sn Alloys by e.m.f. measurements , 1970 .

[38]  D. Sadoway,et al.  Electrochemical Determination of the Thermodynamic Properties of Lithium-Antimony Alloys , 2015 .

[39]  R. Neelameggham Primary production of magnesium , 2013 .

[40]  Petr Vanýsek,et al.  ELECTROCHEMICAL SERIES , 2010 .

[41]  H. Wendt,et al.  Performance and thermodynamic properties of Na-Sn and Na-Pb molten alloy electrodes for alkali metal thermoelectric converter (AMTEC) , 1996 .