Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG.

[1]  A.S. Gevins,et al.  Automated analysis of the electrical activity of the human brain (EEG): A progress report , 1975, Proceedings of the IEEE.

[2]  J Gotman,et al.  A quantitative comparison of traditional reading of the EEG and interpretation of computer-extracted features in patients with supratentorial brain lesions. , 1975, Electroencephalography and clinical neurophysiology.

[3]  J R Ives,et al.  Clinical applications of spectral analysis and extraction of features from electroencephalograms with slow waves in adult patients. , 1973, Electroencephalography and clinical neurophysiology.

[4]  F Grémy,et al.  An Approach to an Automatic Pattern Recognition of the Electroencephalogram: Background Rhythm and Paroxysmal Elements , 1973, Methods of Information in Medicine.

[5]  H R Townsend,et al.  The automatic estimation of epileptic spike activity. , 1973, International journal of bio-medical computing.

[6]  A. Rémond,et al.  La théorie des objets électrographiques , 1972 .

[7]  J R Carrie,et al.  A technique for analyzing transient EEG abnormalities. , 1972, Electroencephalography and clinical neurophysiology.

[8]  B Saltzberg,et al.  Detection of focal depth spiking in the scalp EEG of monkeys. , 1971, Electroencephalography and clinical neurophysiology.

[9]  C A Caceres,et al.  Pattern reading of the clinical electroencephalogram with a digital computer. , 1967, Electroencephalography and clinical neurophysiology.

[10]  K. A. Kooi,et al.  Voltage‐time characteristics of spikes and other rapid electroencephalographic transients , 1966, Neurology.

[11]  J R Smith,et al.  Automatic analysis and detection of EEG spikes. , 1974, IEEE transactions on bio-medical engineering.

[12]  D O Walter,et al.  Semiautomatic quantification of sharpness of EEG phenomena. , 1973, IEEE transactions on bio-medical engineering.