Unprecedented Charge-Transfer Complex of Fused Diporphyrin as Near-Infrared Absorption-Induced High-Aspect-Ratio Nanorods.

Charge-transfer (CT) complexes of near-infrared absorbing systems have been unknown until now. Consequently, structural similarities between donor and acceptor are rather important to achieve this phenomenon. Herein, we report electron donors such as non-fused diporphyrin-anthracene (DP), zinc diporphyrin-anthracene (ZnDP) and fused zinc diporphyrin-anthracene (FZnDP) in which FZnDP absorbs in NIR region and permits a CT complex with the electron acceptor, perylene diimide (PDI) in CHCl3 exclusively. UV/Vis-NIR absorption, 1 H NMR, NOESY and powder X-ray diffraction analysis demonstrated that the CT complex formation occurs by π-π stacking between perylene units in FZnDP and PDI upon mixing together in a 1:1 molar concentration in CHCl3 , unlike non-fused ZnDP and DP. TEM and AFM images revealed that the CT complex initially forms nanospheres leading to nanorods by diffusion of CH3 OH vapors into the CHCl3 solution of FZnDP/PDI (1:1 molar ratio). Therefore, these CT nanorods could lead to significant advances in optical, biological and ferroelectric applications.

[1]  A. Osuka,et al.  Chemistry of meso-Aryl-Substituted Expanded Porphyrins: Aromaticity and Molecular Twist. , 2017, Chemical reviews.

[2]  M. Stępień,et al.  Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. , 2017, Chemical reviews.

[3]  Weihong Zhu,et al.  Development of Ion Chemosensors Based on Porphyrin Analogues. , 2017, Chemical reviews.

[4]  A. Osuka,et al.  A Directly Fused Subporphyrin Dimer with a Wavelike Structure. , 2016, Angewandte Chemie.

[5]  Kenichi Kato,et al.  Spontaneous Formation of an Air-Stable Radical upon the Direct Fusion of Diphenylmethane to a Triarylporphyrin. , 2016, Angewandte Chemie.

[6]  Jie Zhang,et al.  N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells , 2016 .

[7]  Anindita Das,et al.  H-bonding directed programmed supramolecular assembly of naphthalene-diimide (NDI) derivatives. , 2016, Chemical communications.

[8]  Hua Lu,et al.  Optically Active Porphyrin and Phthalocyanine Systems. , 2016, Chemical reviews.

[9]  Dongho Kim,et al.  Synthesis of Di-peri-dinaphthoporphyrins by PtCl2 -Mediated Cyclization of Quinodimethane-type Porphyrins. , 2016, Angewandte Chemie.

[10]  H. Upadhyaya,et al.  D–π–A system based on zinc porphyrin dyes for dye-sensitized solar cells: Combined experimental and DFT–TDDFT study , 2015 .

[11]  M. El-Sayed,et al.  A Step Toward Efficient Panchromatic Multi-Chromophoric Sensitizers for Dye Sensitized Solar Cells , 2015 .

[12]  J. Morton,et al.  Synthesis and investigation of donor–porphyrin–acceptor triads with long-lived photo-induced charge-separate states† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01830g , 2015, Chemical science.

[13]  Dongho Kim,et al.  Fused corrole dimers interconvert between nonaromatic and aromatic states through two-electron redox reactions. , 2015, Angewandte Chemie.

[14]  A. Osuka,et al.  Conjugated porphyrin arrays: synthesis, properties and applications for functional materials. , 2015, Chemical Society reviews.

[15]  Jesse J. Bergkamp,et al.  Current advances in fused tetrathiafulvalene donor-acceptor systems. , 2015, Chemical Society reviews.

[16]  Jong Min Lim,et al.  meso-meso linked porphyrin-[26]hexaphyrin-porphyrin hybrid arrays and their triply linked tapes exhibiting strong absorption bands in the NIR region. , 2015, Journal of the American Chemical Society.

[17]  A. Ajayaghosh,et al.  Organic donor-acceptor assemblies form coaxial p-n heterojunctions with high photoconductivity. , 2015, Angewandte Chemie.

[18]  M. Grätzel,et al.  Meso-substituted porphyrins for dye-sensitized solar cells. , 2014, Chemical reviews.

[19]  A. Osuka,et al.  meso-β dibenzo[a,g]corannulene-fused porphyrins. , 2014, Organic letters.

[20]  N. Robertson,et al.  Ethynyl thiophene-appended unsymmetrical zinc porphyrin sensitizers for dye-sensitized solar cells , 2014 .

[21]  A. Das,et al.  Supramolekulare Anordnungen mit Charge‐Transfer‐Wechselwirkungen zwischen Donor‐ und Akzeptor‐Chromophoren , 2014 .

[22]  Suhrit Ghosh,et al.  Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. , 2014, Angewandte Chemie.

[23]  Subi J. George,et al.  Supramolecular charge transfer nanostructures. , 2014, Physical chemistry chemical physics : PCCP.

[24]  Holger Butenschön,et al.  Oxidative aromatische Kupplung und Scholl‐Reaktion im Vergleich , 2013 .

[25]  K. Skonieczny,et al.  Comparison of oxidative aromatic coupling and the Scholl reaction. , 2013, Angewandte Chemie.

[26]  Priscilla D. Antunez,et al.  Fused porphyrin-single-walled carbon nanotube hybrids: efficient formation and photophysical characterization. , 2013, ACS nano.

[27]  F. Würthner,et al.  Molecular assemblies of perylene bisimide dyes in water. , 2012, Angewandte Chemie.

[28]  Frank Würthner,et al.  Molekülverbände von Perylenbisimid‐Farbstoffen in Wasser , 2012 .

[29]  M. Drobizhev,et al.  Engineering conjugation in para-phenylene-bridged porphyrin tapes , 2012 .

[30]  Sukumaran Santhosh Babu,et al.  Selbstorganisierte Gelbildner für die organische Elektronik , 2012 .

[31]  Ayyappanpillai Ajayaghosh,et al.  Self-assembled gelators for organic electronics. , 2012, Angewandte Chemie.

[32]  S. Forrest,et al.  Fused pyrene-diporphyrins: shifting near-infrared absorption to 1.5 microm and beyond. , 2010, Angewandte Chemie.

[33]  Subi J. George,et al.  Supramolecular hydrogels and high-aspect-ratio nanofibers through charge-transfer-induced alternate coassembly. , 2010, Angewandte Chemie.

[34]  H. Anderson,et al.  Bis-anthracene fused porphyrins: synthesis, crystal structure, and near-IR absorption. , 2010, Organic letters.

[35]  Xi Zhang,et al.  Supramolecular amphiphiles based on a water-soluble charge-transfer complex: fabrication of ultralong nanofibers with tunable straightness. , 2009, Angewandte Chemie.

[36]  Junsheng Yu,et al.  Room-temperature discotic liquid-crystalline coronene diimides exhibiting high charge-carrier mobility in air , 2009 .

[37]  Xi Zhang,et al.  Tuning the Amphiphilicity of Building Blocks: Controlled Self‐Assembly and Disassembly for Functional Supramolecular Materials , 2009 .

[38]  M. Kuimova,et al.  Intramolecular rotation in a porphyrin dimer controls singlet oxygen production. , 2009, Journal of the American Chemical Society.

[39]  Seunghun Eu,et al.  Novel unsymmetrically pi-elongated porphyrin for dye-sensitized TiO2 cells. , 2007, Chemical communications.

[40]  Dongho Kim,et al.  Synthesis of brominated directly fused diporphyrins through gold(III)-mediated oxidation. , 2006, Organic letters.

[41]  Y. Tokura,et al.  Molecular Donor-Acceptor Compounds as Prospective Organic Electronics Materials , 2006 .

[42]  Shin‐ichiro Kawano,et al.  Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. , 2006, Angewandte Chemie.

[43]  Takashi Kato,et al.  Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. , 2005, Journal of the American Chemical Society.

[44]  A. Osuka,et al.  Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. , 2001, Journal of the American Chemical Society.

[45]  Akihiko Tsuda,et al.  Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared , 2001, Science.

[46]  D. N. Rao,et al.  Excited state dynamics in tetra tolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses , 2001 .

[47]  A. Osuka,et al.  Completely Fused Diporphyrins and Triporphyrin , 2000 .

[48]  Kevin M. Smith,et al.  Oligomeric porphyrin arrays , 2000 .

[49]  C. Storm,et al.  Stability constants and proton magnetic resonance studies of zinc .alpha.,.beta.,.gamma.,.delta.-tetraphenylporphin and substituted pyridines , 1969 .

[50]  G. D. Dorough,et al.  Pyridinate Complexes of Some Metallo-derivatives of Tetraphenylporphine and Tetraphenylchlorin1 , 1952 .

[51]  H. Anderson Building molecular wires from the colours of life: conjugated porphyrin oligomers , 1999 .

[52]  J. Lindsey,et al.  Synthesis of tetraphenylporphyrins under very mild conditions , 1986 .