A robust layer-resolving spline collocation method for a convection-diffusion problem
暂无分享,去创建一个
[1] Lutz Tobiska,et al. A finite difference analysis of a streamline diffusion method on a Shishkin mesh , 2004, Numerical Algorithms.
[2] I. A. Savin,et al. The uniform convergence with respect to a small parameter of A.A. Samarskii's monotone scheme and its modification , 1995 .
[3] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[4] Zorica Uzelac,et al. A uniformly accurate spline collocation method for a normalized flux , 2004 .
[5] Zorica Uzelac,et al. Family of quadratic spline difference schemes for a convection–diffusion problem , 2007, Int. J. Comput. Math..
[6] Torsten Linß,et al. Layer-adapted meshes for convection-diffusion problems , 2003 .
[7] M. K. Kadalbajoo,et al. A survey of numerical techniques for solving singularly perturbed ordinary differential equations , 2002, Appl. Math. Comput..
[8] JohnM . Miller,et al. Robust Computational Techniques for Boundary Layers , 2000 .
[9] Martin Stynes,et al. The midpoint upwind scheme , 1997 .
[10] Torsten Linß,et al. Solution Decompositions for Linear Convection-Diffusion Problems , 2002 .
[11] Zorica Uzelac,et al. The discrete minimum principle for quadratic spline discretization of a singularly perturbed problem , 2009, Math. Comput. Simul..