Fully discrete random walks for space-time fractional diffusion equations

For space-time fractional diffusion equations a theory of discrete-space discrete-time random walks, analogous to the theory of continuous-time random walks, is presented. The essential assumption is that the probabilities for waiting times and jump-widths behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. Properly scaled passage to the diffusion limit then leads to the space-time fractional diffusion equation. Illustrating examples are given, numerical results and plots of simulations are displayed.

[1]  Mark M. Meerschaert,et al.  STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .

[2]  Gianni De Fabritiis,et al.  Discrete random walk models for symmetric Lévy–Feller diffusion processes , 1999 .

[3]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[4]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[5]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[6]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[7]  Konstantin V. Chukbar Stochastic transport and fractional derivatives , 1995 .

[8]  A. R. M. Robson,et al.  Problems in Mathematical Physics , 1965 .

[9]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[10]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[11]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[12]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[13]  G. Weiss,et al.  Expected Number of Distinct Sites Visited by a Random Walk with an Infinite Variance , 1970 .

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[15]  Marcin Kotulski,et al.  Asymptotic distributions of continuous-time random walks: A probabilistic approach , 1995 .

[16]  Francesco Mainardi,et al.  Random walk models approximating symmetric space-fractional diffusion processes , 2012, 1210.6589.

[17]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[18]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[19]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.