Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites

In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well-dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011

[1]  R. Krishnamoorti,et al.  The role of interfacial interactions in the dynamic mechanical response of functionalized SWNT-PS nanocomposites , 2007 .

[2]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[3]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[4]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[5]  Hsu-Chiang Kuan,et al.  Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite , 2007 .

[6]  Joseph L. Keddie,et al.  Size-Dependent Depression of the Glass Transition Temperature in Polymer Films , 1994 .

[7]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[8]  Sharon C. Glotzer,et al.  Molecular dynamics simulation of a polymer melt with a nanoscopic particle , 2002 .

[9]  C. Ou,et al.  Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with organoclay , 2004 .

[10]  Dale W. Schaefer,et al.  How Nano Are Nanocomposites , 2007 .

[11]  Karl Schulte,et al.  Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites , 2004 .

[12]  Rodney D. Priestley,et al.  Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. , 2007, Nature materials.

[13]  Sie Chin Tjong,et al.  STRUCTURAL AND MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2006 .

[14]  Christopher J. Ellison,et al.  The distribution of glass-transition temperatures in nanoscopically confined glass formers , 2003, Nature materials.

[15]  Kyeongjae Cho,et al.  Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites , 2002, cond-mat/0203349.

[16]  P. Nealey,et al.  Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates , 2001 .

[17]  Ahmed Al-Ostaz,et al.  Statistical model for characterizing random microstructure of inclusion–matrix composites , 2007 .

[18]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[19]  L. C. Brinson,et al.  A Sign Control Method for Fitting and Interconverting Material Functions for Linearly Viscoelastic Solids , 1997 .

[20]  Derrick Dean,et al.  S2-Glass/Epoxy Polymer Nanocomposites: Manufacturing, Structures, Thermal and Mechanical Properties , 2003 .

[21]  Frank T. Fisher,et al.  Spectral Response and Effective Viscoelastic Properties of Mwnt-Reinforced Polycarbonate , 2004 .

[22]  Tianxi Liu,et al.  Thermal degradation behavior of polyamide 6/clay nanocomposites , 2003 .

[23]  Javier Segurado,et al.  A numerical investigation of the effect of particle clustering on the mechanical properties of composites , 2003 .

[24]  T. Chou,et al.  An assessment of the science and technology of carbon nanotube-based fibers and composites , 2010 .

[25]  L. Catherine Brinson,et al.  Simulation of interphase percolation and gradients in polymer nanocomposites , 2009 .

[26]  Wei Zhou,et al.  Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity , 2004 .

[27]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[28]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[29]  Richard W. Siegel,et al.  Glass transition behavior of alumina/polymethylmethacrylate nanocomposites , 2002 .

[30]  I. Daniel,et al.  Reinforcement of carbon/epoxy composites with multi-wall carbon nanotubes and dispersion enhancing block copolymers , 2008 .

[31]  H. Shen,et al.  Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties , 2007 .

[32]  H. Kim,et al.  Statistical properties of interparticle/void distance for amorphous plastics toughening , 2006 .

[33]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[34]  M. Errico,et al.  Nylon 6/Calcium Carbonate Nanocomposites: Characterization and Properties , 2006 .

[35]  L. Brinson,et al.  Viscoelastic behavior of nanotube-filled polycarbonate: Effect of aspect ratio and interface chemistry , 2010 .

[36]  L. Brinson,et al.  Functionalized SWNT/polymer nanocomposites for dramatic property improvement , 2005 .

[37]  Wallace,et al.  Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  L. Schadler,et al.  Quantitative equivalence between polymer nanocomposites and thin polymer films , 2005, Nature materials.

[39]  J. Torkelson,et al.  Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging , 2006 .