Iterative multiscale gradient computation for heterogeneous subsurface flow

Abstract We introduce a semi-analytical iterative multiscale derivative computation methodology that allows for error control and reduction to any desired accuracy, up to fine-scale precision. The model responses are computed by the multiscale forward simulation of flow in heterogeneous porous media. The derivative computation method is based on the augmentation of the model equation and state vectors with the smoothing stage defined by the iterative multiscale method. In the formulation, we avoid additional complexity involved in computing partial derivatives associated to the smoothing step. We account for it as an approximate derivative computation stage. The numerical experiments illustrate how the newly introduced derivative method computes misfit objective function gradients that converge to fine-scale one as the iterative multiscale residual converges. The robustness of the methodology is investigated for test cases with high contrast permeability fields. The iterative multiscale gradient method casts a promising approach, with minimal accuracy-efficiency tradeoff, for large-scale heterogeneous porous media optimization problems.

[1]  F. Anterion,et al.  Use of Parameter Gradients for Reservoir History Matching , 1989 .

[2]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[3]  G. Chavent,et al.  History Matching by Use of Optimal Theory , 1975 .

[4]  Hui Zhou,et al.  Operator-Based Multiscale Method for Compressible Flow , 2006 .

[5]  H. Tchelepi,et al.  A multiscale adjoint method to compute sensitivity coefficients for flow in heterogeneous porous media , 2010 .

[6]  Hamdi A. Tchelepi,et al.  A multiscale method for subsurface inverse modeling: Single-phase transient flow , 2011 .

[7]  Louis J. Durlofsky,et al.  Development and application of reduced‐order modeling procedures for subsurface flow simulation , 2009 .

[8]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: A User's Guide , 2009 .

[9]  Dean S. Oliver,et al.  History Matching of Three-Phase Flow Production Data , 2001 .

[10]  Hadi Hajibeygi,et al.  Multiscale gradient computation for flow in heterogeneous porous media , 2017, J. Comput. Phys..

[11]  Olwijn Leeuwenburgh,et al.  Quantification of the impact of ensemble size on the quality of an ensemble gradient using principles of hypothesis testing , 2015, ANSS 2015.

[12]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[13]  Patrick Jenny,et al.  Adaptive iterative multiscale finite volume method , 2011, J. Comput. Phys..

[14]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[15]  Patrick Jenny,et al.  Iterative multiscale finite-volume method , 2008, J. Comput. Phys..

[16]  Hamdi A. Tchelepi,et al.  Algebraic multiscale solver for flow in heterogeneous porous media , 2014, J. Comput. Phys..

[17]  K.-A. Lie,et al.  Successful application of multiscale methods in a real reservoir simulator environment , 2016, Computational Geosciences.

[18]  Jan Dirk Jansen,et al.  Adjoint-based optimization of multi-phase flow through porous media – A review , 2011 .

[19]  J. Jansen,et al.  Reduced-order optimal control of water flooding using proper orthogonal decomposition , 2006 .

[20]  Stein Krogstad,et al.  Adjoint Multiscale Mixed Finite Elements , 2011 .

[21]  Jose Rodrigues,et al.  Calculating derivatives for automatic history matching , 2006 .

[22]  P.J.P. Egberts,et al.  Optimal waterflood design using the adjoint method , 2007 .

[23]  Hadi Hajibeygi,et al.  Multiscale Gradient Computation for Multiphase Flow in Porous Media , 2017 .

[24]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[25]  Ning Liu,et al.  Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .

[26]  Khalid Aziz,et al.  Reservoir Simulation Grids: Opportunities and Problems , 1993 .

[27]  Yixuan Wang,et al.  Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media , 2014, J. Comput. Phys..