Sharp Sets of Permutations

Abstract A set of permutations is sharp if its cardinality is the product of the distinct non-zero Hamming distances between pairs of permutations in the set. We give a number of new results and constructions for sharp sets and groups and for the more special geometric sets and groups, using a mixture of algebraic and combinatorial techniques.

[1]  Michel Deza,et al.  Bounds for permutation arrays , 1978 .

[2]  Tatsuro Ito,et al.  Sharp permutation groups , 1979 .

[3]  M. Yoshizawa On Infinite Four‐Transitive Permutation Groups , 1979 .

[4]  L. Babai,et al.  On Sharply Edge-Transitive Permutation Groups , 1981 .

[5]  William M. Kantor,et al.  Homogeneous Designs and Geometric Lattices , 1985, J. Comb. Theory, Ser. A.

[6]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[7]  Michel Deza,et al.  Bouquets of matroids, d-injection geometries and diagrams , 1987 .

[8]  Peter Lorimer Finite projective planes and sharply 2-transitive subsets of finite groups , 1974 .

[9]  Peter J. Cameron,et al.  ON PERMUTATION GEOMETRIES , 1979 .

[10]  H. Schwerdtfeger Gesammelte Abhandlungen, by Ferdinand Georg Frobenius. Edited by J- P. Serre. Vol. I, vii + 650 pages. Vol. II, 733 pages. Vol. III, 740 pages (with a complete list of all titles). Springer-Verlag, Berlin, Heidelberg, New York, 1968. U.S. $34.00. , 1969, Canadian Mathematical Bulletin.

[11]  Hans Zassenhaus,et al.  Über endliche Fastkörper , 1935 .

[12]  Richard M. Wilson,et al.  Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..

[13]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[14]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[15]  E.R. Berlekamp On Subsets with Intersections of Even Cardinality , 1969, Canadian Mathematical Bulletin.

[16]  Peter Frankl,et al.  On Subsets with Cardinalities of Intersections Divisible by a Fixed Integer , 1983, Eur. J. Comb..

[17]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[18]  M. Deza Some New Generalizations of Sharply t-Transitive Groups and Sets , 1983 .

[19]  Tosiro Tsuzuku,et al.  On Multiple Transitivity of Permutation Groups , 1961, Nagoya Mathematical Journal.

[20]  Jack E. Graver Boolean designs and self-dual matroids , 1975 .

[21]  William M. Kantor,et al.  2-Transitive Designs , 1975 .

[22]  M. Hall On a theorem of Jordan , 1954 .

[23]  Masao Kiyota,et al.  An Inequality for Finite Permutation Groups , 1979, J. Comb. Theory, Ser. A.